Python源码示例:yolo3.model.yolo_loss()

示例1
def train(model, image_data, y_true, log_dir='logs/'):
    '''retrain/fine-tune the model'''
    model.compile(optimizer='adam', loss={
        # use custom yolo_loss Lambda layer.
        'yolo_loss': lambda y_true, y_pred: y_pred})

    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=True, save_best_only=True)
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=1, mode='auto')

    model.fit([image_data, *y_true],
              np.zeros(len(image_data)),
              validation_split=.1,
              batch_size=32,
              epochs=30,
              callbacks=[logging, checkpoint, early_stopping])
    model.save_weights(log_dir + 'trained_weights.h5')
    # Further training. 
示例2
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    # y_true = [Input(shape=(416//{0:32, 1:16, 2:8}[l], 416//{0:32, 1:16, 2:8}[l], 9//3, 80+5)) for l in range(3)]
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    print('model_body.input: ', model_body.input)
    print('model.input: ', model.input)

    return model 
示例3
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例4
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=True):
    '''create the training model'''
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)//3
    y_true = [Input(shape=(h//32, w//32, num_anchors, num_classes+5)),
              Input(shape=(h//16, w//16, num_anchors, num_classes+5)),
              Input(shape=(h//8, w//8, num_anchors, num_classes+5))]

    model_body = yolo_body(image_input, num_anchors, num_classes)

    if load_pretrained:
        weights_path = os.path.join('model_data', 'yolo_weights.h5')
        if not os.path.exists(weights_path):
            print("CREATING WEIGHTS FILE" + weights_path)
            yolo_path = os.path.join('model_data', 'yolo.h5')
            orig_model = load_model(yolo_path, compile=False)
            orig_model.save_weights(weights_path)
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        if freeze_body:
            # Do not freeze 3 output layers.
            for i in range(len(model_body.layers)-3):
                model_body.layers[i].trainable = False

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model_body, model 
示例5
def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
    model.compile(optimizer='adam', loss={
        'yolo_loss': lambda y_true, y_pred: y_pred})
    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)
    batch_size = 15
    val_split = 0.1
    with open(annotation_path, encoding='UTF-8') as f:
        lines = f.readlines()
    np.random.shuffle(lines)
    num_val = int(len(lines)*val_split)
    num_train = len(lines) - num_val
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))


    try :
        #########2、修改epochs为30 ###########
        model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
            steps_per_epoch = max(1, num_train // batch_size),
            validation_data = data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),
            validation_steps = max(1, num_val // batch_size), epochs = 30, initial_epoch = 0)
    except :
        print("error")
    finally:
        model.save_weights(log_dir + 'trained_weights_except.h5')
    model.save_weights(log_dir + 'trained_weights.h5') 
示例6
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
            weights_path='model_data/yolo_weights.h5'):
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers)-7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model 
示例7
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例8
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例9
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例10
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例11
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例12
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例13
def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
    model.compile(optimizer=Adam(lr=1e-3), loss={
        'yolo_loss': lambda y_true, y_pred: y_pred})
    # 该回调函数将日志信息写入TensorBorad,使得你可以动态的观察训练和测试指标的图像以及不同层的激活值直方图。
    logging = TensorBoard(log_dir=log_dir)
    # 该回调函数将在每个epoch后保存模型到filepath
    checkpoint = ModelCheckpoint(log_dir + "best_weights.h5",
                                 verbose=1,
                                 save_weights_only=True, save_best_only=True, mode='auto', period=1)
    # 当评价指标不在提升时,减少学习率
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=1)
    # 当监测值不再改善时,该回调函数将中止训练
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)

    callbacks = [checkpoint, logging, reduce_lr]
    batch_size = 12
    val_split = 0.1
    with open(annotation_path) as f:
        lines = f.readlines()
    np.random.shuffle(lines)  # 打乱排序
    num_val = int(len(lines) * val_split)
    num_train = len(lines) - num_val  # 拿出0.1做val集
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

    model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
                        steps_per_epoch=max(1, num_train // batch_size),
                        validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors,
                                                            num_classes),
                        validation_steps=max(1, num_val // batch_size),
                        epochs=500,
                        initial_epoch=0, callbacks=callbacks)
    model.save_weights(log_dir + 'trained_weights.h5')
    model.save(log_dir + 'model.h5') 
示例14
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
                 weights_path='model_data/yolo_weights.h5'):
    K.clear_session()  # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h // {0: 32, 1: 16, 2: 8}[l], w // {0: 32, 1: 16, 2: 8}[l], \
                           num_anchors // 3, num_classes + 5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors // 3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers) - 7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
                        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model 
示例15
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例16
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例17
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例18
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):
    '''create the training model, for Tiny YOLOv3'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \
        num_anchors//2, num_classes+5)) for l in range(2)]

    model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)
    print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze the darknet body or freeze all but 2 output layers.
            num = (20, len(model_body.layers)-2)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
示例19
def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
    for index in range(1,11):
        e = index*50
        ie = e-50
        if True:
            model.compile(optimizer='adam', loss={
                'yolo_loss': lambda y_true, y_pred: y_pred})
            logging = TensorBoard(log_dir=log_dir)
            checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
                monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)
            batch_size = 6
            val_split = 0.1
            with open(annotation_path) as f:
                lines = f.readlines()
            np.random.shuffle(lines)
            num_val = int(len(lines)*val_split)
            num_train = len(lines) - num_val
            print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))

            model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
                    steps_per_epoch=max(1, num_train//batch_size),
                    validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),
                    validation_steps=max(1, num_val//batch_size),
                    epochs=e,
                    initial_epoch=ie,
                    callbacks=[logging, checkpoint])
            model.save_weights(log_dir + str(index)+'trained_weights.h5') 
示例20
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
            weights_path='model_data/yolo_weights.h5'):
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers)-7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model 
示例21
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
示例22
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
示例23
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
示例24
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
示例25
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
示例26
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
示例27
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
示例28
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model