Python源码示例:torchvision.transforms.transforms.ToTensor()
示例1
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
# resize according to the rules:
# 1. scale shorter side to IMAGE_MIN_SIDE
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
scale_for_shorter_side = image_min_side / min(image.width, image.height)
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
scale = scale_for_shorter_side * scale_for_longer_side
transform = transforms.Compose([
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
return image, scale
示例2
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
# resize according to the rules:
# 1. scale shorter side to IMAGE_MIN_SIDE
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
scale_for_shorter_side = image_min_side / min(image.width, image.height)
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
scale = scale_for_shorter_side * scale_for_longer_side
transform = transforms.Compose([
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
return image, scale
示例3
def preprocess(self,image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
# resize according to the rules:
# 1. scale shorter side to IMAGE_MIN_SIDE
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
scale_for_shorter_side = image_min_side / min(image.width, image.height)
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
scale = scale_for_shorter_side * scale_for_longer_side
transform = transforms.Compose([
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
return image, scale
示例4
def pil_to_tensor(img, shape=(64, 64, 3), transform=None):
"""
Convert PIL image to float tensor
:param img: PIL image
:type img: Image.Image
:param shape: image shape in (H, W, C)
:type shape: tuple or list
:param transform: image transform
:return: tensor
:rtype: torch.Tensor
"""
if transform is None:
transform = transforms.Compose((
transforms.Resize(shape[0]),
transforms.ToTensor()
))
return transform(img)
示例5
def get_datasets(initial_pool):
transform = transforms.Compose(
[transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize(3 * [0.5], 3 * [0.5]), ])
test_transform = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(3 * [0.5], 3 * [0.5]),
]
)
# Note: We use the test set here as an example. You should make your own validation set.
train_ds = datasets.CIFAR10('.', train=True,
transform=transform, target_transform=None, download=True)
test_set = datasets.CIFAR10('.', train=False,
transform=test_transform, target_transform=None, download=True)
active_set = ActiveLearningDataset(train_ds, pool_specifics={'transform': test_transform})
# We start labeling randomly.
active_set.label_randomly(initial_pool)
return active_set, test_set
示例6
def prepare_data(images, color_mode='BGR', new_shape=416, color=(127.5, 127.5, 127.5), mode='square'):
images_ok = np.zeros((images.shape[0], new_shape, new_shape, 3), dtype=images[0].dtype)
images_tensor = torch.zeros((images.shape[0], 3, new_shape, new_shape), dtype=torch.float32)
for i in range(len(images)):
if color_mode == 'BGR':
images[i] = cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB)
elif color_mode == 'RGB':
pass
else:
raise NotImplementedError
images_ok[i], _, _, _ = letterbox(images[i], new_shape, color, mode)
images_tensor[i] = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
])(images_ok[i])
return images_tensor
示例7
def __getitem__(self, index):
im, xpatch, ypatch, rotation, flip, enhance = np.unravel_index(index, self.shape)
with Image.open(self.names[im]) as img:
extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
patch = extractor.extract_patch((xpatch, ypatch))
if rotation != 0:
patch = patch.rotate(rotation * 90)
if flip != 0:
patch = patch.transpose(Image.FLIP_LEFT_RIGHT)
if enhance != 0:
factors = np.random.uniform(.5, 1.5, 3)
patch = ImageEnhance.Color(patch).enhance(factors[0])
patch = ImageEnhance.Contrast(patch).enhance(factors[1])
patch = ImageEnhance.Brightness(patch).enhance(factors[2])
label = self.labels[self.names[im]]
return transforms.ToTensor()(patch), label
示例8
def __getitem__(self, index):
file = self.names[index]
with Image.open(file) as img:
bins = 8 if self.augment else 1
extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
b = torch.zeros((bins, extractor.shape()[0] * extractor.shape()[1], 3, PATCH_SIZE, PATCH_SIZE))
for k in range(bins):
if k % 4 != 0:
img = img.rotate((k % 4) * 90)
if k // 4 != 0:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
patches = extractor.extract_patches()
for i in range(len(patches)):
b[k, i] = transforms.ToTensor()(patches[i])
return b, file
示例9
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
# resize according to the rules:
# 1. scale shorter side to IMAGE_MIN_SIDE
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
scale_for_shorter_side = image_min_side / min(image.width, image.height)
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
scale = scale_for_shorter_side * scale_for_longer_side
transform = transforms.Compose([
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
return image, scale
示例10
def load_images(img_path):
# imread from img_path
img = cv2.imread(img_path)
img = cv2.resize(img, (224, 224))
# pytorch must normalize the pic by
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])
img = transform(img)
img.unsqueeze_(0)
#img_s = img.numpy()
#img_s = np.transpose(img_s, (1, 2, 0))
#cv2.imshow("test img", img_s)
#cv2.waitKey()
return img
示例11
def get_transforms(eval=False, aug=None):
trans = []
if aug["randcrop"] and not eval:
trans.append(transforms.RandomCrop(aug["randcrop"]))
if aug["randcrop"] and eval:
trans.append(transforms.CenterCrop(aug["randcrop"]))
if aug["flip"] and not eval:
trans.append(transforms.RandomHorizontalFlip())
if aug["grayscale"]:
trans.append(transforms.Grayscale())
trans.append(transforms.ToTensor())
trans.append(transforms.Normalize(mean=aug["bw_mean"], std=aug["bw_std"]))
elif aug["mean"]:
trans.append(transforms.ToTensor())
trans.append(transforms.Normalize(mean=aug["mean"], std=aug["std"]))
else:
trans.append(transforms.ToTensor())
trans = transforms.Compose(trans)
return trans
示例12
def transforms(self) -> Compose:
return Compose([transforms.ToTensor()])
示例13
def __init__(self, base_path, txt_file, im_size=96, frames=5):
super(Video_Provider, self).__init__()
self.base_path = base_path
self.txt_file = open(txt_file, 'r').readlines()
self.im_size = im_size
self.trans = transforms.ToTensor()
self.frames = frames
示例14
def classification_task(tmpdir):
model = nn.Sequential(nn.Conv2d(3, 32, 3),
nn.ReLU(),
nn.Conv2d(32, 64, 3),
nn.MaxPool2d(2),
nn.AdaptiveAvgPool2d((7, 7)),
Flatten(),
nn.Linear(7 * 7 * 64, 128),
Dropout(),
nn.Linear(128, 10)
)
model = ModelWrapper(model, nn.CrossEntropyLoss())
test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor())
return model, test
示例15
def segmentation_task(tmpdir):
model = nn.Sequential(nn.Conv2d(3, 32, 3),
nn.ReLU(),
nn.Conv2d(32, 64, 3),
nn.MaxPool2d(2),
nn.Conv2d(64, 64, 3),
Dropout2d(),
nn.ConvTranspose2d(64, 10, 3, 1)
)
model = ModelWrapper(model, nn.CrossEntropyLoss())
test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor())
return model, test
示例16
def cifar100_loader(size=None,root="./cifar100",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param train:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = MNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)
return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args)
示例17
def fashionmnist_loader(size=None,root="./fashionmnist",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param train:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = FashionMNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)
return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args)
示例18
def pathimages_loader(image_paths,size=None,recursive=True,allowed_exts=['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif'],shuffle=False,batch_size=32,mean=0.5,std=0.5,transform="default",**loader_args):
"""
:param image_paths:
:param size:
:param recursive:
:param allowed_exts:
:param shuffle:
:param batch_size:
:param mean:
:param std:
:param transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = ImagesFromPaths(image_paths,trans,recursive=recursive,allowed_exts=allowed_exts)
return DataLoader(data,batch_size=batch_size,shuffle=shuffle,**loader_args)
示例19
def __getitem__(self, index):
im, rotation, flip, enhance = np.unravel_index(index, self.shape)
with Image.open(self.names[im]) as img:
if flip != 0:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if rotation != 0:
img = img.rotate(rotation * 90)
if enhance != 0:
factors = np.random.uniform(.5, 1.5, 3)
img = ImageEnhance.Color(img).enhance(factors[0])
img = ImageEnhance.Contrast(img).enhance(factors[1])
img = ImageEnhance.Brightness(img).enhance(factors[2])
extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
patches = extractor.extract_patches()
label = self.labels[self.names[im]]
b = torch.zeros((len(patches), 3, PATCH_SIZE, PATCH_SIZE))
for i in range(len(patches)):
b[i] = transforms.ToTensor()(patches[i])
return b, label
示例20
def __call__(self, img, target):
img = super(ToTensor, self).__call__(img)
target = torch.as_tensor(np.array(target), dtype=torch.int64)
return img, target
示例21
def preprocessImage(img, use_color_jitter, image_size_dict, img_norm_info, use_caffe_pretrained_model):
# calculate target_size and scale_factor, target_size's format is (h, w)
w_ori, h_ori = img.width, img.height
if w_ori > h_ori:
target_size = (image_size_dict.get('SHORT_SIDE'), image_size_dict.get('LONG_SIDE'))
else:
target_size = (image_size_dict.get('LONG_SIDE'), image_size_dict.get('SHORT_SIDE'))
h_t, w_t = target_size
scale_factor = min(w_t/w_ori, h_t/h_ori)
target_size = (round(scale_factor*h_ori), round(scale_factor*w_ori))
# define and do transform
if use_caffe_pretrained_model:
means_norm = img_norm_info['caffe'].get('mean_rgb')
stds_norm = img_norm_info['caffe'].get('std_rgb')
if use_color_jitter:
transform = transforms.Compose([transforms.Resize(target_size),
transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=means_norm, std=stds_norm)])
else:
transform = transforms.Compose([transforms.Resize(target_size),
transforms.ToTensor(),
transforms.Normalize(mean=means_norm, std=stds_norm)])
img = transform(img) * 255
img = img[(2, 1, 0), :, :]
else:
means_norm = img_norm_info['pytorch'].get('mean_rgb')
stds_norm = img_norm_info['pytorch'].get('std_rgb')
if use_color_jitter:
transform = transforms.Compose([transforms.Resize(target_size),
transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=means_norm, std=stds_norm)])
else:
transform = transforms.Compose([transforms.Resize(target_size),
transforms.ToTensor(),
transforms.Normalize(mean=means_norm, std=stds_norm)])
img = transform(img)
# return necessary data
return img, scale_factor, target_size
示例22
def __init__(self, mode, device):
self.device = device
if os.path.isdir('/home/scratch/luiraf/work/data/celeba/'):
data_root = '/home/scratch/luiraf/work/data/celeba/'
else:
raise FileNotFoundError('Can\'t find celebrity faces.')
self.code_root = os.path.dirname(os.path.realpath(__file__))
self.imgs_root = os.path.join(data_root, 'Img/img_align_celeba/')
self.imgs_root_preprocessed = os.path.join(data_root, 'Img/img_align_celeba_preprocessed/')
if not os.path.isdir(self.imgs_root_preprocessed):
os.mkdir(self.imgs_root_preprocessed)
self.data_split_file = os.path.join(data_root, 'Eval/list_eval_partition.txt')
# input: x-y coordinate
self.num_inputs = 2
# output: pixel values (RGB)
self.num_outputs = 3
# get the labels (train/valid/test)
train_imgs, valid_imgs, test_imgs = self.get_labels()
if mode == 'train':
self.image_files = train_imgs
elif mode == 'valid':
self.image_files = valid_imgs
elif mode == 'test':
self.image_files = test_imgs
else:
raise ValueError
self.img_size = (32, 32, 3)
self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
transforms.Resize((self.img_size[0], self.img_size[1]), Image.LANCZOS),
transforms.ToTensor(),
])
示例23
def handle(self, source, copy_to_local=False, normalize=True,
split=None, classification_mode=False, **transform_args):
"""
Args:
source:
copy_to_local:
normalize:
**transform_args:
Returns:
"""
Dataset = self.make_indexing(CelebA)
data_path = self.get_path(source)
if copy_to_local:
data_path = self.copy_to_local_path(data_path)
if normalize and isinstance(normalize, bool):
normalize = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]
if classification_mode:
train_transform = transforms.Compose([
transforms.RandomResizedCrop(64),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(*normalize),
])
test_transform = transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(*normalize),
])
else:
train_transform = build_transforms(normalize=normalize,
**transform_args)
test_transform = train_transform
if split is None:
train_set = Dataset(root=data_path, transform=train_transform,
download=True)
test_set = Dataset(root=data_path, transform=test_transform)
else:
train_set, test_set = self.make_split(
data_path, split, Dataset, train_transform, test_transform)
input_names = ['images', 'labels', 'attributes']
dim_c, dim_x, dim_y = train_set[0][0].size()
dim_l = len(train_set.classes)
dim_a = train_set.attributes[0].shape[0]
dims = dict(x=dim_x, y=dim_y, c=dim_c, labels=dim_l, attributes=dim_a)
self.add_dataset('train', train_set)
self.add_dataset('test', test_set)
self.set_input_names(input_names)
self.set_dims(**dims)
self.set_scale((-1, 1))
示例24
def _handle_STL(self, Dataset, data_path, transform=None,
labeled_only=False, stl_center_crop=False,
stl_resize_only=False, stl_no_resize=False):
normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
if stl_no_resize:
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
else:
if stl_center_crop:
tr_trans = transforms.CenterCrop(64)
te_trans = transforms.CenterCrop(64)
elif stl_resize_only:
tr_trans = transforms.Resize(64)
te_trans = transforms.Resize(64)
elif stl_no_resize:
pass
else:
tr_trans = transforms.RandomResizedCrop(64)
te_trans = transforms.Resize(64)
train_transform = transforms.Compose([
tr_trans,
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
te_trans,
transforms.ToTensor(),
normalize,
])
if labeled_only:
split = 'train'
else:
split = 'train+unlabeled'
train_set = Dataset(
data_path, split=split, transform=train_transform, download=True)
test_set = Dataset(
data_path, split='test', transform=test_transform, download=True)
return train_set, test_set
示例25
def __init__(self, root, mode, batchsz, n_way, k_shot, k_query, resize, startidx=0):
"""
:param root: root path of mini-imagenet
:param mode: train, val or test
:param batchsz: batch size of sets, not batch of imgs
:param n_way:
:param k_shot:
:param k_query: num of qeruy imgs per class
:param resize: resize to
:param startidx: start to index label from startidx
"""
self.batchsz = batchsz # batch of set, not batch of imgs
self.n_way = n_way # n-way
self.k_shot = k_shot # k-shot
self.k_query = k_query # for evaluation
self.setsz = self.n_way * self.k_shot # num of samples per set
self.querysz = self.n_way * self.k_query # number of samples per set for evaluation
self.resize = resize # resize to
self.startidx = startidx # index label not from 0, but from startidx
print('shuffle DB :%s, b:%d, %d-way, %d-shot, %d-query, resize:%d' % (
mode, batchsz, n_way, k_shot, k_query, resize))
if mode == 'train':
self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
transforms.Resize((self.resize, self.resize)),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
else:
self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
transforms.Resize((self.resize, self.resize)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
self.path = os.path.join(root, 'images') # image path
csvdata = self.loadCSV(os.path.join(root, mode + '.csv')) # csv path
self.data = []
self.img2label = {}
for i, (k, v) in enumerate(csvdata.items()):
self.data.append(v) # [[img1, img2, ...], [img111, ...]]
self.img2label[k] = i + self.startidx # {"img_name[:9]":label}
self.cls_num = len(self.data)
self.create_batch(self.batchsz)
示例26
def idenprof_loader(size=None,root="./idenprof",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",target_transform=None,**loader_args):
"""
:param size:
:param root:
:param train:
:param batch_size:
:param mean:
:param std:
:param transform:
:param target_transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = IdenProf(root,train=train,transform=trans,target_transform=target_transform)
return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args)
示例27
def mnist_loader(size=None,root="./mnist",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param train:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = MNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)
return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args)
示例28
def cifar10_loader(size=None,root="./cifar10",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param train:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = CIFAR10(root,train=train,transform=trans,download=download,target_transform=target_transform)
return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args)
示例29
def svhn_loader(size=None,root="./shvn",set="train",batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param set:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
valid_sets = ('train', 'test', 'extra')
if set not in valid_sets: raise ValueError("set {} is invalid, valid sets include {}".format(set,valid_sets))
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = SVHN(root,split=set,transform=trans,download=download,target_transform=target_transform)
shuffle_mode = True if set == "train" else False
return DataLoader(data,batch_size=batch_size,shuffle=shuffle_mode,**loader_args)
示例30
def cmpfacades_loader(size=None,root="./cmpfacades",set="train",batch_size=32,mean=0.5,std=0.5,transform="default",download=True,reverse_mode=False,**loader_args):
"""
:param size:
:param root:
:param set:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param reverse_mode:
:param loader_args:
:return:
"""
valid_sets = ('train', 'test', 'val')
if set not in valid_sets: raise ValueError("set {} is invalid, valid sets include {}".format(set,valid_sets))
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = CMPFacades(root,source_transforms=trans,target_transforms=trans,set=set,download=download,reverse_mode=reverse_mode)
shuffle_mode = True if set == "train" else False
return DataLoader(data,batch_size=batch_size,shuffle=shuffle_mode,**loader_args)