Python源码示例:torchvision.transforms.transforms.ToTensor()

示例1
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
        # resize according to the rules:
        #   1. scale shorter side to IMAGE_MIN_SIDE
        #   2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
        scale_for_shorter_side = image_min_side / min(image.width, image.height)
        longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
        scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
        scale = scale_for_shorter_side * scale_for_longer_side

        transform = transforms.Compose([
            transforms.Resize((round(image.height * scale), round(image.width * scale))),  # interpolation `BILINEAR` is applied by default
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
        image = transform(image)

        return image, scale 
示例2
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
        # resize according to the rules:
        #   1. scale shorter side to IMAGE_MIN_SIDE
        #   2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
        scale_for_shorter_side = image_min_side / min(image.width, image.height)
        longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
        scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
        scale = scale_for_shorter_side * scale_for_longer_side

        transform = transforms.Compose([
            transforms.Resize((round(image.height * scale), round(image.width * scale))),  # interpolation `BILINEAR` is applied by default
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
        image = transform(image)

        return image, scale 
示例3
def preprocess(self,image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
        # resize according to the rules:
        #   1. scale shorter side to IMAGE_MIN_SIDE
        #   2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
        scale_for_shorter_side = image_min_side / min(image.width, image.height)
        longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
        scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
        scale = scale_for_shorter_side * scale_for_longer_side

        transform = transforms.Compose([
            transforms.Resize((round(image.height * scale), round(image.width * scale))),  # interpolation `BILINEAR` is applied by default
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
        image = transform(image)

        return image, scale 
示例4
def pil_to_tensor(img, shape=(64, 64, 3), transform=None):
    """
    Convert PIL image to float tensor

    :param img: PIL image
    :type img: Image.Image
    :param shape: image shape in (H, W, C)
    :type shape: tuple or list
    :param transform: image transform
    :return: tensor
    :rtype: torch.Tensor
    """
    if transform is None:
        transform = transforms.Compose((
            transforms.Resize(shape[0]),
            transforms.ToTensor()
        ))
    return transform(img) 
示例5
def get_datasets(initial_pool):
    transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.RandomHorizontalFlip(),
         transforms.RandomRotation(30),
         transforms.ToTensor(),
         transforms.Normalize(3 * [0.5], 3 * [0.5]), ])
    test_transform = transforms.Compose(
        [
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(3 * [0.5], 3 * [0.5]),
        ]
    )
    # Note: We use the test set here as an example. You should make your own validation set.
    train_ds = datasets.CIFAR10('.', train=True,
                                transform=transform, target_transform=None, download=True)
    test_set = datasets.CIFAR10('.', train=False,
                                transform=test_transform, target_transform=None, download=True)

    active_set = ActiveLearningDataset(train_ds, pool_specifics={'transform': test_transform})

    # We start labeling randomly.
    active_set.label_randomly(initial_pool)
    return active_set, test_set 
示例6
def prepare_data(images, color_mode='BGR', new_shape=416, color=(127.5, 127.5, 127.5), mode='square'):
    images_ok = np.zeros((images.shape[0], new_shape, new_shape, 3), dtype=images[0].dtype)
    images_tensor = torch.zeros((images.shape[0], 3, new_shape, new_shape), dtype=torch.float32)
    for i in range(len(images)):
        if color_mode == 'BGR':
            images[i] = cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB)
        elif color_mode == 'RGB':
            pass
        else:
            raise NotImplementedError
        images_ok[i], _, _, _ = letterbox(images[i], new_shape, color, mode)

        images_tensor[i] = transforms.Compose([
            transforms.ToPILImage(),
            transforms.ToTensor(),
        ])(images_ok[i])

    return images_tensor 
示例7
def __getitem__(self, index):
        im, xpatch, ypatch, rotation, flip, enhance = np.unravel_index(index, self.shape)

        with Image.open(self.names[im]) as img:
            extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
            patch = extractor.extract_patch((xpatch, ypatch))

            if rotation != 0:
                patch = patch.rotate(rotation * 90)

            if flip != 0:
                patch = patch.transpose(Image.FLIP_LEFT_RIGHT)

            if enhance != 0:
                factors = np.random.uniform(.5, 1.5, 3)
                patch = ImageEnhance.Color(patch).enhance(factors[0])
                patch = ImageEnhance.Contrast(patch).enhance(factors[1])
                patch = ImageEnhance.Brightness(patch).enhance(factors[2])

            label = self.labels[self.names[im]]
            return transforms.ToTensor()(patch), label 
示例8
def __getitem__(self, index):
        file = self.names[index]
        with Image.open(file) as img:

            bins = 8 if self.augment else 1
            extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
            b = torch.zeros((bins, extractor.shape()[0] * extractor.shape()[1], 3, PATCH_SIZE, PATCH_SIZE))

            for k in range(bins):

                if k % 4 != 0:
                    img = img.rotate((k % 4) * 90)

                if k // 4 != 0:
                    img = img.transpose(Image.FLIP_LEFT_RIGHT)

                extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
                patches = extractor.extract_patches()

                for i in range(len(patches)):
                    b[k, i] = transforms.ToTensor()(patches[i])

            return b, file 
示例9
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
        # resize according to the rules:
        #   1. scale shorter side to IMAGE_MIN_SIDE
        #   2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
        scale_for_shorter_side = image_min_side / min(image.width, image.height)
        longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
        scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
        scale = scale_for_shorter_side * scale_for_longer_side

        transform = transforms.Compose([
            transforms.Resize((round(image.height * scale), round(image.width * scale))),  # interpolation `BILINEAR` is applied by default
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
        image = transform(image)

        return image, scale 
示例10
def load_images(img_path):
    # imread from img_path
    img = cv2.imread(img_path)
    img = cv2.resize(img, (224, 224))

    # pytorch must normalize the pic by 
    # mean = [0.485, 0.456, 0.406]
    # std = [0.229, 0.224, 0.225]
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
        ])
    
    img = transform(img)
    img.unsqueeze_(0)
    #img_s = img.numpy()
    #img_s = np.transpose(img_s, (1, 2, 0))
    #cv2.imshow("test img", img_s)
    #cv2.waitKey()
    return img 
示例11
def get_transforms(eval=False, aug=None):
    trans = []

    if aug["randcrop"] and not eval:
        trans.append(transforms.RandomCrop(aug["randcrop"]))

    if aug["randcrop"] and eval:
        trans.append(transforms.CenterCrop(aug["randcrop"]))

    if aug["flip"] and not eval:
        trans.append(transforms.RandomHorizontalFlip())

    if aug["grayscale"]:
        trans.append(transforms.Grayscale())
        trans.append(transforms.ToTensor())
        trans.append(transforms.Normalize(mean=aug["bw_mean"], std=aug["bw_std"]))
    elif aug["mean"]:
        trans.append(transforms.ToTensor())
        trans.append(transforms.Normalize(mean=aug["mean"], std=aug["std"]))
    else:
        trans.append(transforms.ToTensor())

    trans = transforms.Compose(trans)
    return trans 
示例12
def transforms(self) -> Compose:
        return Compose([transforms.ToTensor()]) 
示例13
def __init__(self, base_path, txt_file, im_size=96, frames=5):
        super(Video_Provider, self).__init__()
        self.base_path = base_path
        self.txt_file = open(txt_file, 'r').readlines()
        self.im_size = im_size
        self.trans = transforms.ToTensor()
        self.frames = frames 
示例14
def classification_task(tmpdir):
    model = nn.Sequential(nn.Conv2d(3, 32, 3),
                          nn.ReLU(),
                          nn.Conv2d(32, 64, 3),
                          nn.MaxPool2d(2),
                          nn.AdaptiveAvgPool2d((7, 7)),
                          Flatten(),
                          nn.Linear(7 * 7 * 64, 128),
                          Dropout(),
                          nn.Linear(128, 10)
                          )
    model = ModelWrapper(model, nn.CrossEntropyLoss())
    test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor())
    return model, test 
示例15
def segmentation_task(tmpdir):
    model = nn.Sequential(nn.Conv2d(3, 32, 3),
                          nn.ReLU(),
                          nn.Conv2d(32, 64, 3),
                          nn.MaxPool2d(2),
                          nn.Conv2d(64, 64, 3),
                          Dropout2d(),
                          nn.ConvTranspose2d(64, 10, 3, 1)
                          )
    model = ModelWrapper(model, nn.CrossEntropyLoss())
    test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor())
    return model, test 
示例16
def cifar100_loader(size=None,root="./cifar100",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """
    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())
        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = MNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
示例17
def fashionmnist_loader(size=None,root="./fashionmnist",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())
        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = FashionMNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
示例18
def pathimages_loader(image_paths,size=None,recursive=True,allowed_exts=['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif'],shuffle=False,batch_size=32,mean=0.5,std=0.5,transform="default",**loader_args):
    """

    :param image_paths:
    :param size:
    :param recursive:
    :param allowed_exts:
    :param shuffle:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param loader_args:
    :return:
    """
    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = ImagesFromPaths(image_paths,trans,recursive=recursive,allowed_exts=allowed_exts)

    return DataLoader(data,batch_size=batch_size,shuffle=shuffle,**loader_args) 
示例19
def __getitem__(self, index):
        im, rotation, flip, enhance = np.unravel_index(index, self.shape)

        with Image.open(self.names[im]) as img:

            if flip != 0:
                img = img.transpose(Image.FLIP_LEFT_RIGHT)

            if rotation != 0:
                img = img.rotate(rotation * 90)

            if enhance != 0:
                factors = np.random.uniform(.5, 1.5, 3)
                img = ImageEnhance.Color(img).enhance(factors[0])
                img = ImageEnhance.Contrast(img).enhance(factors[1])
                img = ImageEnhance.Brightness(img).enhance(factors[2])

            extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
            patches = extractor.extract_patches()

            label = self.labels[self.names[im]]

            b = torch.zeros((len(patches), 3, PATCH_SIZE, PATCH_SIZE))
            for i in range(len(patches)):
                b[i] = transforms.ToTensor()(patches[i])

            return b, label 
示例20
def __call__(self, img, target):

        img = super(ToTensor, self).__call__(img)
        target = torch.as_tensor(np.array(target), dtype=torch.int64)

        return img, target 
示例21
def preprocessImage(img, use_color_jitter, image_size_dict, img_norm_info, use_caffe_pretrained_model):
		# calculate target_size and scale_factor, target_size's format is (h, w)
		w_ori, h_ori = img.width, img.height
		if w_ori > h_ori:
			target_size = (image_size_dict.get('SHORT_SIDE'), image_size_dict.get('LONG_SIDE'))
		else:
			target_size = (image_size_dict.get('LONG_SIDE'), image_size_dict.get('SHORT_SIDE'))
		h_t, w_t = target_size
		scale_factor = min(w_t/w_ori, h_t/h_ori)
		target_size = (round(scale_factor*h_ori), round(scale_factor*w_ori))
		# define and do transform
		if use_caffe_pretrained_model:
			means_norm = img_norm_info['caffe'].get('mean_rgb')
			stds_norm = img_norm_info['caffe'].get('std_rgb')
			if use_color_jitter:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			else:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			img = transform(img) * 255
			img = img[(2, 1, 0), :, :]
		else:
			means_norm = img_norm_info['pytorch'].get('mean_rgb')
			stds_norm = img_norm_info['pytorch'].get('std_rgb')
			if use_color_jitter:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			else:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			img = transform(img)
		# return necessary data
		return img, scale_factor, target_size 
示例22
def __init__(self, mode, device):

        self.device = device

        if os.path.isdir('/home/scratch/luiraf/work/data/celeba/'):
            data_root = '/home/scratch/luiraf/work/data/celeba/'
        else:
            raise FileNotFoundError('Can\'t find celebrity faces.')

        self.code_root = os.path.dirname(os.path.realpath(__file__))
        self.imgs_root = os.path.join(data_root, 'Img/img_align_celeba/')
        self.imgs_root_preprocessed = os.path.join(data_root, 'Img/img_align_celeba_preprocessed/')
        if not os.path.isdir(self.imgs_root_preprocessed):
            os.mkdir(self.imgs_root_preprocessed)
        self.data_split_file = os.path.join(data_root, 'Eval/list_eval_partition.txt')

        # input: x-y coordinate
        self.num_inputs = 2
        # output: pixel values (RGB)
        self.num_outputs = 3

        # get the labels (train/valid/test)
        train_imgs, valid_imgs, test_imgs = self.get_labels()
        if mode == 'train':
            self.image_files = train_imgs
        elif mode == 'valid':
            self.image_files = valid_imgs
        elif mode == 'test':
            self.image_files = test_imgs
        else:
            raise ValueError

        self.img_size = (32, 32, 3)
        self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
                                             transforms.Resize((self.img_size[0], self.img_size[1]), Image.LANCZOS),
                                             transforms.ToTensor(),
                                             ]) 
示例23
def handle(self, source, copy_to_local=False, normalize=True,
               split=None, classification_mode=False, **transform_args):
        """

        Args:
            source:
            copy_to_local:
            normalize:
            **transform_args:

        Returns:

        """
        Dataset = self.make_indexing(CelebA)
        data_path = self.get_path(source)

        if copy_to_local:
            data_path = self.copy_to_local_path(data_path)

        if normalize and isinstance(normalize, bool):
            normalize = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]

        if classification_mode:
            train_transform = transforms.Compose([
                transforms.RandomResizedCrop(64),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
            test_transform = transforms.Compose([
                transforms.Resize(64),
                transforms.CenterCrop(64),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
        else:
            train_transform = build_transforms(normalize=normalize,
                                               **transform_args)
            test_transform = train_transform

        if split is None:
            train_set = Dataset(root=data_path, transform=train_transform,
                                download=True)
            test_set = Dataset(root=data_path, transform=test_transform)
        else:
            train_set, test_set = self.make_split(
                data_path, split, Dataset, train_transform, test_transform)
        input_names = ['images', 'labels', 'attributes']

        dim_c, dim_x, dim_y = train_set[0][0].size()
        dim_l = len(train_set.classes)
        dim_a = train_set.attributes[0].shape[0]

        dims = dict(x=dim_x, y=dim_y, c=dim_c, labels=dim_l, attributes=dim_a)
        self.add_dataset('train', train_set)
        self.add_dataset('test', test_set)
        self.set_input_names(input_names)
        self.set_dims(**dims)

        self.set_scale((-1, 1)) 
示例24
def _handle_STL(self, Dataset, data_path, transform=None,
                    labeled_only=False, stl_center_crop=False,
                    stl_resize_only=False, stl_no_resize=False):
        normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

        if stl_no_resize:
            train_transform = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])
        else:
            if stl_center_crop:
                tr_trans = transforms.CenterCrop(64)
                te_trans = transforms.CenterCrop(64)
            elif stl_resize_only:
                tr_trans = transforms.Resize(64)
                te_trans = transforms.Resize(64)
            elif stl_no_resize:
                pass
            else:
                tr_trans = transforms.RandomResizedCrop(64)
                te_trans = transforms.Resize(64)

            train_transform = transforms.Compose([
                tr_trans,
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                te_trans,
                transforms.ToTensor(),
                normalize,
            ])
        if labeled_only:
            split = 'train'
        else:
            split = 'train+unlabeled'
        train_set = Dataset(
            data_path, split=split, transform=train_transform, download=True)
        test_set = Dataset(
            data_path, split='test', transform=test_transform, download=True)
        return train_set, test_set 
示例25
def __init__(self, root, mode, batchsz, n_way, k_shot, k_query, resize, startidx=0):
        """

        :param root: root path of mini-imagenet
        :param mode: train, val or test
        :param batchsz: batch size of sets, not batch of imgs
        :param n_way:
        :param k_shot:
        :param k_query: num of qeruy imgs per class
        :param resize: resize to
        :param startidx: start to index label from startidx
        """

        self.batchsz = batchsz  # batch of set, not batch of imgs
        self.n_way = n_way  # n-way
        self.k_shot = k_shot  # k-shot
        self.k_query = k_query  # for evaluation
        self.setsz = self.n_way * self.k_shot  # num of samples per set
        self.querysz = self.n_way * self.k_query  # number of samples per set for evaluation
        self.resize = resize  # resize to
        self.startidx = startidx  # index label not from 0, but from startidx
        print('shuffle DB :%s, b:%d, %d-way, %d-shot, %d-query, resize:%d' % (
        mode, batchsz, n_way, k_shot, k_query, resize))

        if mode == 'train':
            self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
                                                 transforms.Resize((self.resize, self.resize)),
                                                 # transforms.RandomHorizontalFlip(),
                                                 # transforms.RandomRotation(5),
                                                 transforms.ToTensor(),
                                                 transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
                                                 ])
        else:
            self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
                                                 transforms.Resize((self.resize, self.resize)),
                                                 transforms.ToTensor(),
                                                 transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
                                                 ])

        self.path = os.path.join(root, 'images')  # image path
        csvdata = self.loadCSV(os.path.join(root, mode + '.csv'))  # csv path
        self.data = []
        self.img2label = {}
        for i, (k, v) in enumerate(csvdata.items()):
            self.data.append(v)  # [[img1, img2, ...], [img111, ...]]
            self.img2label[k] = i + self.startidx  # {"img_name[:9]":label}
        self.cls_num = len(self.data)

        self.create_batch(self.batchsz) 
示例26
def idenprof_loader(size=None,root="./idenprof",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",target_transform=None,**loader_args):

    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)


    else:
        trans = transform

    data = IdenProf(root,train=train,transform=trans,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
示例27
def mnist_loader(size=None,root="./mnist",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):

    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)


    else:
        trans = transform

    data = MNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
示例28
def cifar10_loader(size=None,root="./cifar10",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):

    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = CIFAR10(root,train=train,transform=trans,download=download,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
示例29
def svhn_loader(size=None,root="./shvn",set="train",batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
    """

    :param size:
    :param root:
    :param set:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """
    valid_sets = ('train', 'test', 'extra')

    if set not in valid_sets: raise ValueError("set {}  is invalid, valid sets include {}".format(set,valid_sets))

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform
    data = SVHN(root,split=set,transform=trans,download=download,target_transform=target_transform)
    shuffle_mode = True if set == "train" else False
    return DataLoader(data,batch_size=batch_size,shuffle=shuffle_mode,**loader_args) 
示例30
def cmpfacades_loader(size=None,root="./cmpfacades",set="train",batch_size=32,mean=0.5,std=0.5,transform="default",download=True,reverse_mode=False,**loader_args):
    """

    :param size:
    :param root:
    :param set:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param reverse_mode:
    :param loader_args:
    :return:
    """
    valid_sets = ('train', 'test', 'val')

    if set not in valid_sets: raise ValueError("set {}  is invalid, valid sets include {}".format(set,valid_sets))

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform
    data = CMPFacades(root,source_transforms=trans,target_transforms=trans,set=set,download=download,reverse_mode=reverse_mode)
    shuffle_mode = True if set == "train" else False
    return DataLoader(data,batch_size=batch_size,shuffle=shuffle_mode,**loader_args)