Python源码示例:theano.sparse.as_sparse_variable()
示例1
def variable(value, dtype=None, name=None):
'''Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
# Returns
A variable instance (with Keras metadata included).
'''
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(value)
else:
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value, name=name, strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
return variable
示例2
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例3
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例4
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例5
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例6
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例7
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例8
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例9
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例10
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
variable.constraint = constraint
return variable
示例11
def __init__(self, *args, **kwargs):
super(OpsReflected, self).__init__(*args, reflected=True, **kwargs)
self._rT = rTReflectedOp(self._c_ops.rTReflected, self._c_ops.N)
self._sT = sTReflectedOp(self._c_ops.sTReflected, self._c_ops.N)
self._A1Big = ts.as_sparse_variable(self._c_ops.A1Big)
# Compute grid on unit disk with ~source_npts points
source_npts = kwargs.get("source_npts", 1)
if source_npts <= 1:
self.source_dx = np.array([0.0])
self.source_dy = np.array([0.0])
self.source_dz = np.array([0.0])
self.source_npts = 1
else:
N = int(2 + np.sqrt(source_npts * 4 / np.pi))
dx = np.linspace(-1, 1, N)
dx, dy = np.meshgrid(dx, dx)
dz = 1 - dx ** 2 - dy ** 2
self.source_dx = dx[dz > 0].flatten()
self.source_dy = dy[dz > 0].flatten()
self.source_dz = dz[dz > 0].flatten()
self.source_npts = len(self.source_dx)
# NOTE: dz is *negative*, since the source is actually
# *closer* to the body than in the point approximation
self.source_dx = tt.as_tensor_variable(self.source_dx)
self.source_dy = tt.as_tensor_variable(self.source_dy)
self.source_dz = tt.as_tensor_variable(-self.source_dz)
# Oren-Nayar (1994) intensity profile (for rendering)
self._OrenNayar = OrenNayarOp(self._c_ops.OrenNayarPolynomial)
self._pTON94 = pTOp(self._c_ops.pT, _c_ops.STARRY_OREN_NAYAR_DEG)
示例12
def variable(value, dtype=None, name=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
_assert_sparse_module()
variable = th_sparse_module.as_sparse_variable(
value, name=_prepare_name(name, 'variable'))
else:
if isinstance(value, (theano.tensor.TensorVariable,
theano.tensor.sharedvar.TensorSharedVariable,
theano.tensor.TensorConstant)):
# Support for RandomStreams().normal(), .uniform().
value = value.eval()
value = np.asarray(value, dtype=dtype)
variable = theano.shared(value=value,
name=_prepare_name(name, 'variable'),
strict=False)
variable._keras_shape = value.shape
variable._uses_learning_phase = False
return variable