Python源码示例:tfcode.cmp.deconv()

示例1
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例2
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例3
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例4
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例5
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例6
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例7
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例8
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs 
示例9
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
                    kernel_size, batch_norm_is_training_op, wt_decay):
  multi_scale_belief = tf.stop_gradient(multi_scale_belief)
  with tf.variable_scope('readout_maps_deconv'):
    x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
                     wt_decay=wt_decay, neurons=num_neurons, strides=strides,
                     layers_per_block=layers_per_block, kernel_size=kernel_size,
                     conv_fn=slim.conv2d_transpose, offset=0,
                     name='readout_maps_deconv')
    probs = tf.sigmoid(x)
  return x, probs