Python源码示例:tensorflow.python.training.moving.weighted_moving_average()

示例1
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例2
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例3
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例4
def testWeightedMovingAverage(self):
    with self.test_session() as sess:
      decay = 0.5
      weight = tf.placeholder(tf.float32, [])
      val = tf.placeholder(tf.float32, [])

      wma = moving_averages.weighted_moving_average(val, decay, weight)
      tf.global_variables_initializer().run()

      # Get the first weighted moving average.
      val_1 = 3.0
      weight_1 = 4.0
      wma_array = sess.run(
          wma, feed_dict={val: val_1, weight: weight_1})
      numerator_1 = val_1 * weight_1 * (1.0 - decay)
      denominator_1 = weight_1 * (1.0 - decay)
      self.assertAllClose(numerator_1 / denominator_1, wma_array)

      # Get the second weighted moving average.
      val_2 = 11.0
      weight_2 = 22.0
      wma_array = sess.run(
          wma, feed_dict={val: val_2, weight: weight_2})
      numerator_2 = numerator_1 * decay + val_2 * weight_2 * (1.0 - decay)
      denominator_2 = denominator_1 * decay + weight_2 * (1.0 - decay)
      self.assertAllClose(numerator_2 / denominator_2, wma_array) 
示例5
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例6
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例7
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例8
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例9
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops 
示例10
def compute_losses_multi_or(logits, actions_one_hot, weights=None,
                            num_actions=-1, data_loss_wt=1., reg_loss_wt=1.,
                            ewma_decay=0.99, reg_loss_op=None):
  assert(num_actions > 0), 'num_actions must be specified and must be > 0.'
  
  with tf.name_scope('loss'):
    if weights is None:
      weight = tf.ones_like(actions_one_hot, dtype=tf.float32, name='weight')
    
    actions_one_hot = tf.cast(tf.reshape(actions_one_hot, [-1, num_actions],
                                         're_actions_one_hot'), tf.float32)
    weights = tf.reduce_sum(tf.reshape(weights, [-1, num_actions], 're_weight'),
                            reduction_indices=1)
    total = tf.reduce_sum(weights)

    action_prob = tf.nn.softmax(logits)
    action_prob = tf.reduce_sum(tf.multiply(action_prob, actions_one_hot),
                                reduction_indices=1)
    example_loss = -tf.log(tf.maximum(tf.constant(1e-4), action_prob))

    data_loss_op = tf.reduce_sum(example_loss * weights) / total
    if reg_loss_op is None:
      if reg_loss_wt > 0:
        reg_loss_op = tf.add_n(tf.losses.get_regularization_losses())
      else:
        reg_loss_op = tf.constant(0.)
    
    if reg_loss_wt > 0:
      total_loss_op = data_loss_wt*data_loss_op + reg_loss_wt*reg_loss_op 
    else:
      total_loss_op = data_loss_wt*data_loss_op

    is_correct = tf.cast(tf.greater(action_prob, 0.5, name='pred_class'), tf.float32)
    acc_op = tf.reduce_sum(is_correct*weights) / total

    ewma_acc_op = moving_averages.weighted_moving_average(
        acc_op, ewma_decay, weight=total, name='ewma_acc')

    acc_ops = [ewma_acc_op]

  return reg_loss_op, data_loss_op, total_loss_op, acc_ops