Python源码示例:tensorflow.python.ops.standard.to_int64()

示例1
def one_hot_encoding(labels,
                     num_classes,
                     on_value=1.0,
                     off_value=0.0,
                     outputs_collections=None,
                     scope=None):
  """Transform numeric labels into onehot_labels using `tf.one_hot`.

  Args:
    labels: [batch_size] target labels.
    num_classes: Total number of classes.
    on_value: A scalar defining the on-value.
    off_value: A scalar defining the off-value.
    outputs_collections: Collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    One-hot encoding of the labels.
  """
  with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
    labels = ops.convert_to_tensor(labels)
    if labels.dtype == dtypes.int32:
      labels = standard_ops.to_int64(labels)
    outputs = standard_ops.one_hot(
        labels, num_classes, on_value=on_value, off_value=off_value)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
示例2
def one_hot_encoding(labels,
                     num_classes,
                     on_value=1.0,
                     off_value=0.0,
                     outputs_collections=None,
                     scope=None):
  """Transform numeric labels into onehot_labels using `tf.one_hot`.

  Args:
    labels: [batch_size] target labels.
    num_classes: Total number of classes.
    on_value: A scalar defining the on-value.
    off_value: A scalar defining the off-value.
    outputs_collections: Collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    One-hot encoding of the labels.
  """
  with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
    labels = ops.convert_to_tensor(labels)
    if labels.dtype == dtypes.int32:
      labels = standard_ops.to_int64(labels)
    outputs = standard_ops.one_hot(labels,
                                   num_classes,
                                   on_value=on_value,
                                   off_value=off_value)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
示例3
def one_hot_encoding(labels,
                     num_classes,
                     on_value=1.0,
                     off_value=0.0,
                     outputs_collections=None,
                     scope=None):
  """Transform numeric labels into onehot_labels using `tf.one_hot`.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    on_value: A scalar defining the on-value.
    off_value: A scalar defining the off-value.
    outputs_collections: collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    one hot encoding of the labels.
  """
  with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
    labels = ops.convert_to_tensor(labels)
    if labels.dtype == dtypes.int32:
      labels = standard_ops.to_int64(labels)
    outputs = standard_ops.one_hot(labels,
                                   num_classes,
                                   on_value=on_value,
                                   off_value=off_value)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
示例4
def one_hot_encoding(labels,
                     num_classes,
                     on_value=1.0,
                     off_value=0.0,
                     outputs_collections=None,
                     scope=None):
  """Transform numeric labels into onehot_labels using `tf.one_hot`.

  Args:
    labels: [batch_size] target labels.
    num_classes: Total number of classes.
    on_value: A scalar defining the on-value.
    off_value: A scalar defining the off-value.
    outputs_collections: Collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    One-hot encoding of the labels.
  """
  with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
    labels = ops.convert_to_tensor(labels)
    if labels.dtype == dtypes.int32:
      labels = standard_ops.to_int64(labels)
    outputs = standard_ops.one_hot(
        labels, num_classes, on_value=on_value, off_value=off_value)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
示例5
def one_hot_encoding(labels,
                     num_classes,
                     on_value=1.0,
                     off_value=0.0,
                     outputs_collections=None,
                     scope=None):
  """Transform numeric labels into onehot_labels using `tf.one_hot`.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    on_value: A scalar defining the on-value.
    off_value: A scalar defining the off-value.
    outputs_collections: collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    one hot encoding of the labels.
  """
  with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
    labels = ops.convert_to_tensor(labels)
    if labels.dtype == dtypes.int32:
      labels = standard_ops.to_int64(labels)
    outputs = standard_ops.one_hot(labels,
                                   num_classes,
                                   on_value=on_value,
                                   off_value=off_value)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
示例6
def one_hot_encoding(target, n_classes, on_value=1.0, off_value=0.0,
                     name="OneHotEncoding"):
    """ One Hot Encoding.

    Transform numeric labels into a binary vector.

    Input:
        The Labels Placeholder.

    Output:
        2-D Tensor, The encoded labels.

    Arguments:
        target: `Placeholder`. The labels placeholder.
        n_classes: `int`. Total number of classes.
        on_value: `scalar`. A scalar defining the on-value.
        off_value: `scalar`. A scalar defining the off-value.
        name: A name for this layer (optional). Default: 'OneHotEncoding'.

    """

    with tf.name_scope(name):
        if target.dtype != dtypes.int64:
            target = standard_ops.to_int64(target)

        target = standard_ops.one_hot(target, n_classes,
                                      on_value=on_value,
                                      off_value=off_value)

    # Track output tensor.
    tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, target)

    return target 
示例7
def one_hot_encoding(labels,
                     num_classes,
                     on_value=1.0,
                     off_value=0.0,
                     outputs_collections=None,
                     scope=None):
  """Transform numeric labels into onehot_labels using `tf.one_hot`.

  Args:
    labels: [batch_size] target labels.
    num_classes: total number of classes.
    on_value: A scalar defining the on-value.
    off_value: A scalar defining the off-value.
    outputs_collections: collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    one hot encoding of the labels.
  """
  with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
    labels = ops.convert_to_tensor(labels)
    if labels.dtype == dtypes.int32:
      labels = standard_ops.to_int64(labels)
    outputs = standard_ops.one_hot(labels,
                                   num_classes,
                                   on_value=on_value,
                                   off_value=off_value)
    return utils.collect_named_outputs(outputs_collections, sc, outputs)