Python源码示例:tensorflow.python.ops.standard.less()

示例1
def summarize_activation(op):
  """Summarize an activation.

  This applies the given activation and adds useful summaries specific to the
  activation.

  Args:
    op: The tensor to summarize (assumed to be a layer activation).
  Returns:
    The summary op created to summarize `op`.
  """
  if op.op.type in ('Relu', 'Softplus', 'Relu6'):
    # Using inputs to avoid floating point equality and/or epsilons.
    _add_scalar_summary(
        standard_ops.reduce_mean(standard_ops.to_float(standard_ops.less(
            op.op.inputs[0], standard_ops.cast(0.0, op.op.inputs[0].dtype)))),
        '%s/zeros' % op.op.name)
  if op.op.type == 'Relu6':
    _add_scalar_summary(
        standard_ops.reduce_mean(standard_ops.to_float(standard_ops.greater(
            op.op.inputs[0], standard_ops.cast(6.0, op.op.inputs[0].dtype)))),
        '%s/sixes' % op.op.name)
  return _add_histogram_summary(op, '%s/activation' % op.op.name) 
示例2
def summarize_activation(op):
  """Summarize an activation.

  This applies the given activation and adds useful summaries specific to the
  activation.

  Args:
    op: The tensor to summarize (assumed to be a layer activation).
  Returns:
    The summary op created to summarize `op`.
  """
  if op.op.type in ('Relu', 'Softplus', 'Relu6'):
    # Using inputs to avoid floating point equality and/or epsilons.
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.less(op.op.inputs[
                    0], standard_ops.cast(0.0, op.op.inputs[0].dtype)))),
        '%s/zeros' % op.op.name)
  if op.op.type == 'Relu6':
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.greater(op.op.inputs[
                    0], standard_ops.cast(6.0, op.op.inputs[0].dtype)))),
        '%s/sixes' % op.op.name)
  return _add_histogram_summary(op, '%s/activation' % op.op.name) 
示例3
def summarize_activation(op):
  """Summarize an activation.

  This applies the given activation and adds useful summaries specific to the
  activation.

  Args:
    op: The tensor to summarize (assumed to be a layer activation).
  Returns:
    The summary op created to summarize `op`.
  """
  if op.op.type in ('Relu', 'Softplus', 'Relu6'):
    # Using inputs to avoid floating point equality and/or epsilons.
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.less(op.op.inputs[
                    0], standard_ops.cast(0.0, op.op.inputs[0].dtype)))),
        '%s/zeros' % op.op.name)
  if op.op.type == 'Relu6':
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.greater(op.op.inputs[
                    0], standard_ops.cast(6.0, op.op.inputs[0].dtype)))),
        '%s/sixes' % op.op.name)
  return _add_histogram_summary(op, '%s/activation' % op.op.name) 
示例4
def summarize_activation(op):
  """Summarize an activation.

  This applies the given activation and adds useful summaries specific to the
  activation.

  Args:
    op: The tensor to summarize (assumed to be a layer activation).
  Returns:
    The summary op created to summarize `op`.
  """
  if op.op.type in ('Relu', 'Softplus', 'Relu6'):
    # Using inputs to avoid floating point equality and/or epsilons.
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.less(op.op.inputs[
                    0], standard_ops.cast(0.0, op.op.inputs[0].dtype)))),
        '%s/zeros' % op.op.name)
  if op.op.type == 'Relu6':
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.greater(op.op.inputs[
                    0], standard_ops.cast(6.0, op.op.inputs[0].dtype)))),
        '%s/sixes' % op.op.name)
  return _add_histogram_summary(op, '%s/activation' % op.op.name) 
示例5
def summarize_activation(op):
  """Summarize an activation.

  This applies the given activation and adds useful summaries specific to the
  activation.

  Args:
    op: The tensor to summarize (assumed to be a layer activation).
  Returns:
    The summary op created to summarize `op`.
  """
  if op.op.type in ('Relu', 'Softplus', 'Relu6'):
    # Using inputs to avoid floating point equality and/or epsilons.
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.less(op.op.inputs[
                    0], standard_ops.cast(0.0, op.op.inputs[0].dtype)))),
        '%s/zeros' % op.op.name)
  if op.op.type == 'Relu6':
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.greater(op.op.inputs[
                    0], standard_ops.cast(6.0, op.op.inputs[0].dtype)))),
        '%s/sixes' % op.op.name)
  return _add_histogram_summary(op, '%s/activation' % op.op.name) 
示例6
def testIndexedSlicesWithDenseShape(self):
    with self.test_session():
      data = ops.IndexedSlices(tf.constant([1, 2, 3]),
                               tf.constant([0, 1]),
                               dense_shape=tf.constant([3]))
      zero = tf.constant(0)
      one = tf.constant(1)
      less_op = tf.less(zero, one)
      switch_false, switch_true = control_flow_ops.switch(data, less_op)
      self.assertAllEqual([1, 2, 3], switch_true.values.eval())
      self.assertAllEqual([0, 1], switch_true.indices.eval()) 
示例7
def testCondContext(self):
    with self.test_session() as sess:
      x = tf.constant(2)
      y = tf.constant(5)
      control_flow_ops.cond(tf.less(x, y),
                            lambda: tf.mul(x, 17),
                            lambda: tf.add(y, 23))
      for op in sess.graph.get_operations():
        c = op._get_control_flow_context()
        if c:
          compare.ProtoEq(
              c.to_proto(),
              control_flow_ops.CondContext.from_proto(c.to_proto()).to_proto()) 
示例8
def testWhileContext(self):
    with self.test_session() as sess:
      i = tf.constant(0)
      c = lambda i: tf.less(i, 10)
      b = lambda i: tf.add(i, 1)
      tf.while_loop(c, b, [i])
      for op in sess.graph.get_operations():
        c = op._get_control_flow_context()
        if c:
          compare.ProtoEq(
              c.to_proto(),
              control_flow_ops.WhileContext.from_proto(c.to_proto()).to_proto()) 
示例9
def summarize_activation(op):
  """Summarize an activation.

  This applies the given activation and adds useful summaries specific to the
  activation.

  Args:
    op: The tensor to summarize (assumed to be a layer activation).
  Returns:
    The summary op created to summarize `op`.
  """
  if op.op.type in ('Relu', 'Softplus', 'Relu6'):
    # Using inputs to avoid floating point equality and/or epsilons.
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.less(op.op.inputs[
                    0], standard_ops.cast(0.0, op.op.inputs[0].dtype)))),
        '%s/zeros' % op.op.name)
  if op.op.type == 'Relu6':
    _add_scalar_summary(
        standard_ops.reduce_mean(
            standard_ops.to_float(
                standard_ops.greater(op.op.inputs[
                    0], standard_ops.cast(6.0, op.op.inputs[0].dtype)))),
        '%s/sixes' % op.op.name)
  return _add_histogram_summary(op, '%s/activation' % op.op.name)