Python源码示例:tensorflow.keras.constraints.serialize()
示例1
def get_config(self):
config = {
'filters': self.filters,
'kernel_size': self.kernel_size,
'strides': self.strides,
'padding': self.padding,
'dilation_rate': self.dilation_rate,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'demod': self.demod
}
base_config = super(Conv2DMod, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例2
def get_config(self):
config = {
"groups": self.groups,
"axis": self.axis,
"epsilon": self.epsilon,
"center": self.center,
"scale": self.scale,
"beta_initializer": initializers.serialize(self.beta_initializer),
"gamma_initializer": initializers.serialize(self.gamma_initializer),
"beta_regularizer": regularizers.serialize(self.beta_regularizer),
"gamma_regularizer": regularizers.serialize(self.gamma_regularizer),
"beta_constraint": constraints.serialize(self.beta_constraint),
"gamma_constraint": constraints.serialize(self.gamma_constraint)
}
base_config = super(GroupNormalization, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例3
def get_config(self):
config = super(QDepthwiseConv2D, self).get_config()
config.pop("filters", None)
config.pop("kernel_initializer", None)
config.pop("kernel_regularizer", None)
config.pop("kernel_constraint", None)
config["depth_multiplier"] = self.depth_multiplier
config["depthwise_initializer"] = initializers.serialize(
self.depthwise_initializer)
config["depthwise_regularizer"] = regularizers.serialize(
self.depthwise_regularizer)
config["depthwise_constraint"] = constraints.serialize(
self.depthwise_constraint)
config["depthwise_quantizer"] = constraints.serialize(
self.depthwise_quantizer_internal)
config["bias_quantizer"] = constraints.serialize(
self.bias_quantizer_internal)
config["depthwise_range"] = self.depthwise_range
config["bias_range"] = self.bias_range
return config
示例4
def get_config(self):
config = {
'groups': self.groups,
'axis': self.axis,
'epsilon': self.epsilon,
'center': self.center,
'scale': self.scale,
'beta_initializer': initializers.serialize(self.beta_initializer),
'gamma_initializer': initializers.serialize(self.gamma_initializer),
'beta_regularizer': regularizers.serialize(self.beta_regularizer),
'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
'beta_constraint': constraints.serialize(self.beta_constraint),
'gamma_constraint': constraints.serialize(self.gamma_constraint)
}
base_config = super(GroupNormalization, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例5
def get_config(self):
config = {
"input_channels": self.input_channels,
"output_channels": self.output_channels,
"kernel_size": self.kernel_size,
"strides": self.strides,
"padding": self.padding,
"data_format": self.data_format,
"dilation_rate": self.dilation_rate,
"activation": activations.serialize(self.activation),
"groups": self.groups,
"use_bias": self.use_bias,
"kernel_initializer": initializers.serialize(self.kernel_initializer),
"bias_initializer": initializers.serialize(self.bias_initializer),
"kernel_regularizer": regularizers.serialize(self.kernel_regularizer),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"activity_regularizer": regularizers.serialize(self.activity_regularizer),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"bias_constraint": constraints.serialize(self.bias_constraint)
}
base_config = super(GroupConv2D, self).get_config()
return {**base_config, **config}
示例6
def get_config(self):
config = {
"input_channels": self.input_channels,
"output_channels": self.output_channels,
"kernel_size": self.kernel_size,
"strides": self.strides,
"padding": self.padding,
"output_padding": self.output_padding,
"data_format": self.data_format,
"dilation_rate": self.dilation_rate,
"activation": activations.serialize(self.activation),
"groups": self.groups,
"use_bias": self.use_bias,
"kernel_initializer": initializers.serialize(self.kernel_initializer),
"bias_initializer": initializers.serialize(self.bias_initializer),
"kernel_regularizer": regularizers.serialize(self.kernel_regularizer),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"activity_regularizer": regularizers.serialize(self.activity_regularizer),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"bias_constraint": constraints.serialize(self.bias_constraint)
}
base_config = super(GroupConv2DTranspose, self).get_config()
return {**base_config, **config}
示例7
def get_config(self):
config = {
'axis': self.axis,
'epsilon': self.epsilon,
'beta_initializer': initializers.serialize(self.beta_initializer),
'tau_initializer': initializers.serialize(self.tau_initializer),
'gamma_initializer': initializers.serialize(self.gamma_initializer),
'beta_regularizer': regularizers.serialize(self.beta_regularizer),
'tau_regularizer': regularizers.serialize(self.tau_regularizer),
'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
'beta_constraint': constraints.serialize(self.beta_constraint),
'gamma_constraint': constraints.serialize(self.gamma_constraint),
'tau_constraint': constraints.serialize(self.tau_constraint)
}
base_config = super(FRN, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例8
def serialize_kwarg(key, attr):
if key.endswith('_initializer'):
return initializers.serialize(attr)
if key.endswith('_regularizer'):
return regularizers.serialize(attr)
if key.endswith('_constraint'):
return constraints.serialize(attr)
if key == 'activation':
return activations.serialize(attr)
if key == 'use_bias':
return attr
示例9
def get_config(self):
config = {
'ratio': self.ratio,
'return_mask': self.return_mask,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例10
def get_config(self):
config = {
'k': self.k,
'channels': self.channels,
'return_mask': self.return_mask,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例11
def get_config(self):
config = {
'k': self.k,
'mlp_hidden': self.mlp_hidden,
'mlp_activation': self.mlp_activation,
'return_mask': self.return_mask,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例12
def get_config(self):
config = {
'channels': self.channels,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例13
def get_config(self):
config = super(DepthwiseConv2D, self).get_config()
config.pop('filters')
config.pop('kernel_initializer')
config.pop('kernel_regularizer')
config.pop('kernel_constraint')
config['depth_multiplier'] = self.depth_multiplier
config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer)
config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer)
config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint)
return config
示例14
def get_config(self):
config = {
"units": self.units,
"activation": activations.serialize(self.activation),
"use_bias": self.use_bias,
"kernel_quantizer":
constraints.serialize(self.kernel_quantizer_internal),
"bias_quantizer":
constraints.serialize(self.bias_quantizer_internal),
"kernel_initializer":
initializers.serialize(self.kernel_initializer),
"bias_initializer":
initializers.serialize(self.bias_initializer),
"kernel_regularizer":
regularizers.serialize(self.kernel_regularizer),
"bias_regularizer":
regularizers.serialize(self.bias_regularizer),
"activity_regularizer":
regularizers.serialize(self.activity_regularizer),
"kernel_constraint":
constraints.serialize(self.kernel_constraint),
"bias_constraint":
constraints.serialize(self.bias_constraint),
"kernel_range": self.kernel_range,
"bias_range": self.bias_range
}
base_config = super(QDense, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例15
def get_config(self):
config = {
"kernel_quantizer":
constraints.serialize(self.kernel_quantizer_internal),
"bias_quantizer":
constraints.serialize(self.bias_quantizer_internal),
"kernel_range": self.kernel_range,
"bias_range": self.bias_range
}
base_config = super(QConv1D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例16
def get_config(self):
config = {
"kernel_quantizer":
constraints.serialize(self.kernel_quantizer_internal),
"bias_quantizer":
constraints.serialize(self.bias_quantizer_internal),
"kernel_range": self.kernel_range,
"bias_range": self.bias_range
}
base_config = super(QConv2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例17
def get_config(self):
config = {
'axis': self.axis,
'momentum': self.momentum,
'epsilon': self.epsilon,
'center': self.center,
'scale': self.scale,
'beta_quantizer':
constraints.serialize(self.beta_quantizer_internal),
'gamma_quantizer':
constraints.serialize(self.gamma_quantizer_internal),
'mean_quantizer':
constraints.serialize(self.mean_quantizer_internal),
'variance_quantizer':
constraints.serialize(self.variance_quantizer_internal),
'beta_initializer': initializers.serialize(self.beta_initializer),
'gamma_initializer': initializers.serialize(self.gamma_initializer),
'moving_mean_initializer':
initializers.serialize(self.moving_mean_initializer),
'moving_variance_initializer':
initializers.serialize(self.moving_variance_initializer),
'beta_regularizer': regularizers.serialize(self.beta_regularizer),
'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
'beta_constraint': constraints.serialize(self.beta_constraint),
'gamma_constraint': constraints.serialize(self.gamma_constraint),
'beta_range': self.beta_range,
'gamma_range': self.gamma_range,
}
base_config = super(BatchNormalization, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例18
def get_config(self):
config = {"T": self.T,
"n_hidden": self.n_hidden,
"activation": activations.serialize(self.activation),
"activation_lstm": activations.serialize(
self.activation_lstm),
"recurrent_activation": activations.serialize(
self.recurrent_activation),
"kernel_initializer": initializers.serialize(
self.kernel_initializer),
"recurrent_initializer": initializers.serialize(
self.recurrent_initializer),
"bias_initializer": initializers.serialize(
self.bias_initializer),
"use_bias": self.use_bias,
"unit_forget_bias": self.unit_forget_bias,
"kernel_regularizer": regularizers.serialize(
self.kernel_regularizer),
"recurrent_regularizer": regularizers.serialize(
self.recurrent_regularizer),
"bias_regularizer": regularizers.serialize(
self.bias_regularizer),
"kernel_constraint": constraints.serialize(
self.kernel_constraint),
"recurrent_constraint": constraints.serialize(
self.recurrent_constraint),
"bias_constraint": constraints.serialize(self.bias_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例19
def get_config(self) -> Dict:
"""
Part of keras layer interface, where the signature is converted into a dict
Returns:
configurational dictionary
"""
config = {
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(
self.kernel_initializer),
'bias_initializer': initializers.serialize(
self.bias_initializer),
'kernel_regularizer': regularizers.serialize(
self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(
self.bias_regularizer),
'activity_regularizer': regularizers.serialize(
self.activity_regularizer),
'kernel_constraint': constraints.serialize(
self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) # noqa
示例20
def get_config(self):
config = {
"alpha_initializer": initializers.serialize(self.b_initializer),
"alpha_regularizer": regularizers.serialize(self.b_regularizer),
"alpha_constraint": constraints.serialize(self.b_constraint),
"b_initializer": initializers.serialize(self.b_initializer),
"b_regularizer": regularizers.serialize(self.b_regularizer),
"b_constraint": constraints.serialize(self.b_constraint),
"shared_axes": self.shared_axes,
}
base_config = super(APL, self).get_config()
return dict(list(base_config.items()) + list(config.items()))