Python源码示例:tensorflow.keras.constraints.get()

示例1
def __init__(self,
                 ratio,
                 return_mask=False,
                 sigmoid_gating=False,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.ratio = ratio
        self.return_mask = return_mask
        self.sigmoid_gating = sigmoid_gating
        self.gating_op = K.sigmoid if self.sigmoid_gating else K.tanh
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
示例2
def __init__(self,
                 channels,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.channels = channels
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
示例3
def __init__(self,
                 k,
                 channels=None,
                 return_mask=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.channels = channels
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
示例4
def __init__(self,
                 channels,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(activity_regularizer=activity_regularizer, **kwargs)
        self.channels = channels
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.supports_masking = False 
示例5
def convert_sequence_vocab(self, sequence, sequence_lengths):
        PFAM_TO_UNIREP_ENCODED = {encoding: UNIREP_VOCAB.get(aa, 23) for aa, encoding in PFAM_VOCAB.items()}

        def to_uniprot_unirep(seq, seqlens):
            new_seq = np.zeros_like(seq)

            for pfam_encoding, unirep_encoding in PFAM_TO_UNIREP_ENCODED.items():
                new_seq[seq == pfam_encoding] = unirep_encoding

            # add start/stop
            new_seq = np.pad(new_seq, [[0, 0], [1, 1]], mode='constant')
            new_seq[:, 0] = UNIREP_VOCAB['<START>']
            new_seq[np.arange(new_seq.shape[0]), seqlens + 1] = UNIREP_VOCAB['<STOP>']

            return new_seq

        new_sequence = tf.py_func(to_uniprot_unirep, [sequence, sequence_lengths], sequence.dtype)
        new_sequence.set_shape([sequence.shape[0], sequence.shape[1] + 2])

        return new_sequence 
示例6
def __init__(self,
                 activation: OptStrOrCallable = None,
                 use_bias: bool = True,
                 kernel_initializer: OptStrOrCallable = 'glorot_uniform',
                 bias_initializer: OptStrOrCallable = 'zeros',
                 kernel_regularizer: OptStrOrCallable = None,
                 bias_regularizer: OptStrOrCallable = None,
                 activity_regularizer: OptStrOrCallable = None,
                 kernel_constraint: OptStrOrCallable = None,
                 bias_constraint: OptStrOrCallable = None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        self.activation = activations.get(activation)  # noqa
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        super().__init__(**kwargs) 
示例7
def call(self, inputs):
        def brelu(x):
            # get shape of X, we are interested in the last axis, which is constant
            shape = K.int_shape(x)
            # last axis
            dim = shape[-1]
            # half of the last axis (+1 if necessary)
            dim2 = dim // 2
            if dim % 2 != 0:
                dim2 += 1
            # multiplier will be a tensor of alternated +1 and -1
            multiplier = K.ones((dim2,))
            multiplier = K.stack([multiplier, -multiplier], axis=-1)
            if dim % 2 != 0:
                multiplier = multiplier[:-1]
            # adjust multiplier shape to the shape of x
            multiplier = K.reshape(multiplier, tuple(1 for _ in shape[:-1]) + (-1,))
            return multiplier * tf.nn.relu(multiplier * x)

        return Lambda(brelu)(inputs) 
示例8
def __init__(self,
                 filters,
                 kernel_size,
                 strides=1,
                 padding='valid',
                 dilation_rate=1,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 demod=True,
                 **kwargs):
        super(Conv2DMod, self).__init__(**kwargs)
        self.filters = filters
        self.rank = 2
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.demod = demod
        self.input_spec = [InputSpec(ndim = 4),
                            InputSpec(ndim = 2)] 
示例9
def deserialize_kwarg(key, attr):
    if key.endswith('_initializer'):
        return initializers.get(attr)
    if key.endswith('_regularizer'):
        return regularizers.get(attr)
    if key.endswith('_constraint'):
        return constraints.get(attr)
    if key == 'activation':
        return activations.get(attr) 
示例10
def __init__(self,
                 trainable_kernel=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.trainable_kernel = trainable_kernel
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
示例11
def __init__(self,
                 input_dim_1=None,
                 activation=None,
                 **kwargs):

        super(MinkowskiProduct, self).__init__(**kwargs)
        self.input_dim_1 = input_dim_1
        self.activation = activations.get(activation) 
示例12
def __init__(self,
                 k,
                 mlp_hidden=None,
                 mlp_activation='relu',
                 return_mask=False,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.mlp_hidden = mlp_hidden if mlp_hidden else []
        self.mlp_activation = mlp_activation
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
示例13
def __init__(self,
                 groups=4,
                 axis=-1,
                 epsilon=1e-5,
                 center=True,
                 scale=True,
                 beta_initializer="zeros",
                 gamma_initializer="ones",
                 beta_regularizer=None,
                 gamma_regularizer=None,
                 beta_constraint=None,
                 gamma_constraint=None,
                 **kwargs):
        super(GroupNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.groups = groups
        self.axis = axis
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer = initializers.get(beta_initializer)
        self.gamma_initializer = initializers.get(gamma_initializer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        self.gamma_constraint = constraints.get(gamma_constraint) 
示例14
def __init__(self,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 depth_multiplier=1,
                 data_format=None,
                 activation=None,
                 use_bias=True,
                 depthwise_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 depthwise_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 depthwise_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(DepthwiseConv2D, self).__init__(
            filters=None,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            bias_constraint=bias_constraint,
            **kwargs)
        self.depth_multiplier = depth_multiplier
        self.depthwise_initializer = initializers.get(depthwise_initializer)
        self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
        self.depthwise_constraint = constraints.get(depthwise_constraint)
        self.bias_initializer = initializers.get(bias_initializer)
        self.depthwise_kernel = None
        self.bias = None 
示例15
def get_auto_range_constraint_initializer(quantizer, constraint, initializer):
  """Get value range automatically for quantizer.

  Arguments:
   quantizer: A quantizer class in quantizers.py.
   constraint: A tf.keras constraint.
   initializer: A tf.keras initializer.

  Returns:
    a tuple (constraint, initializer), where
      constraint is clipped by Clip class in this file, based on the
      value range of quantizer.
      initializer is initializer contraint by value range of quantizer.
  """
  if quantizer is not None:
    # let's use now symmetric clipping function
    max_value = max(1, quantizer.max()) if hasattr(quantizer, "max") else 1.0
    min_value = quantizer.min() if hasattr(quantizer, "min") else -1.0

    if constraint:
      constraint = constraints.get(constraint)

    constraint = Clip(-max_value, max_value, constraint, quantizer)
    initializer = initializers.get(initializer)
    if initializer and initializer.__class__.__name__ not in ["Ones", "Zeros"]:
      # we want to get the max value of the quantizer that depends
      # on the distribution and scale
      if not (hasattr(quantizer, "alpha") and
              isinstance(quantizer.alpha, six.string_types)):
        initializer = QInitializer(
            initializer, use_scale=True, quantizer=quantizer)
  return constraint, initializer 
示例16
def get_config(self):
    return {
        "initializer": self.initializer,
        "use_scale": self.use_scale,
        "quantizer": self.quantizer,
    }


#
# Because it may be hard to get serialization from activation functions,
# we may be replacing their instantiation by QActivation in the future.
# 
示例17
def __init__(self, min_value=0.0, max_value=1.0,
               constraint=None, quantizer=None):
    """Initializes Clip constraint class."""

    self.min_value = min_value
    self.max_value = max_value
    self.constraint = constraints.get(constraint)
    # Don't wrap yourself
    if isinstance(self.constraint, Clip):
      self.constraint = None
    self.quantizer = get_quantizer(quantizer) 
示例18
def __init__(self,
                 groups=8,
                 axis=-1,
                 epsilon=1e-5,
                 center=True,
                 scale=True,
                 beta_initializer='zeros',
                 gamma_initializer='ones',
                 beta_regularizer=None,
                 gamma_regularizer=None,
                 beta_constraint=None,
                 gamma_constraint=None,
                 **kwargs):
        """ Initializes one group normalization layer.

            References:
                - [Group Normalization](https://arxiv.org/abs/1803.08494)
        """
        super(GroupNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.groups = groups
        self.axis = axis
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer = initializers.get(beta_initializer)
        self.gamma_initializer = initializers.get(gamma_initializer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        self.gamma_constraint = constraints.get(gamma_constraint) 
示例19
def __init__(self,
                 T=3,
                 n_hidden=512,
                 activation=None,
                 activation_lstm='tanh',
                 recurrent_activation='hard_sigmoid',
                 kernel_initializer='glorot_uniform',
                 recurrent_initializer='orthogonal',
                 bias_initializer='zeros',
                 use_bias=True,
                 unit_forget_bias=True,
                 kernel_regularizer=None,
                 recurrent_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 recurrent_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.activation_lstm = activations.get(activation_lstm)
        self.recurrent_activation = activations.get(recurrent_activation)
        self.recurrent_initializer = initializers.get(recurrent_initializer)
        self.unit_forget_bias = unit_forget_bias
        self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
        self.recurrent_constraint = constraints.get(recurrent_constraint)
        self.T = T
        self.n_hidden = n_hidden 
示例20
def __init__(self,
                 epsilon=1e-6,
                 beta_initializer='zeros',
                 gamma_initializer='ones',
                 tau_initializers='zeros',
                 beta_regularizer=None,
                 gamma_regularizer=None,
                 tau_regularizer=None,
                 beta_constraint=None,
                 gamma_constraint=None,
                 tau_constraint=None,
                 **kwargs):
        super(FRN, self).__init__(**kwargs)
        self.supports_masking = True
        self.epsilon = epsilon
        self.beta_initializer = initializers.get(beta_initializer)
        self.tau_initializer = initializers.get(tau_initializers)
        self.gamma_initializer = initializers.get(gamma_initializer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.tau_regularizer = regularizers.get(tau_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        self.gamma_constraint = constraints.get(gamma_constraint)
        self.tau_constraint = constraints.get(tau_constraint)
        self.tau = None
        self.gamma = None
        self.beta = None
        self.axis = -1 
示例21
def __init__(
        self,
        alpha_initializer="zeros",
        b_initializer="zeros",
        S=1,
        alpha_regularizer=None,
        b_regularizer=None,
        alpha_constraint=None,
        b_constraint=None,
        shared_axes=None,
        **kwargs
    ):
        super(APL, self).__init__(**kwargs)
        self.supports_masking = True
        self.alpha_initializer = initializers.get(alpha_initializer)
        self.alpha_regularizer = regularizers.get(alpha_regularizer)
        self.alpha_constraint = constraints.get(alpha_constraint)
        self.b_initializer = initializers.get(b_initializer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.b_constraint = constraints.get(b_constraint)
        if shared_axes is None:
            self.shared_axes = None
        elif not isinstance(shared_axes, (list, tuple)):
            self.shared_axes = [shared_axes]
        else:
            self.shared_axes = list(shared_axes)
        self.S = S
        self.alpha_arr = []
        self.b_arr = [] 
示例22
def __init__(self,
                 channels,
                 attn_heads=1,
                 concat_heads=True,
                 dropout_rate=0.5,
                 return_attn_coef=False,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 attn_kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 attn_kernel_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 attn_kernel_constraint=None,
                 **kwargs):
        super().__init__(channels,
                         activation=activation,
                         use_bias=use_bias,
                         kernel_initializer=kernel_initializer,
                         bias_initializer=bias_initializer,
                         kernel_regularizer=kernel_regularizer,
                         bias_regularizer=bias_regularizer,
                         activity_regularizer=activity_regularizer,
                         kernel_constraint=kernel_constraint,
                         bias_constraint=bias_constraint,
                         **kwargs)
        self.attn_heads = attn_heads
        self.concat_heads = concat_heads
        self.dropout_rate = dropout_rate
        self.return_attn_coef = return_attn_coef
        self.attn_kernel_initializer = initializers.get(attn_kernel_initializer)
        self.attn_kernel_regularizer = regularizers.get(attn_kernel_regularizer)
        self.attn_kernel_constraint = constraints.get(attn_kernel_constraint)

        if concat_heads:
            # Output will have shape (..., attention_heads * channels)
            self.output_dim = self.channels * self.attn_heads
        else:
            # Output will have shape (..., channels)
            self.output_dim = self.channels