Python源码示例:syntaxnet.util.check.IsNone()

示例1
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      with tf.name_scope('convert_to_dyn'):
        tensor = tf.reshape(tensor, [stride, -1, dim])
        tensor = tf.transpose(tensor, perm=[1, 0, 2])
        pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
        self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例2
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例3
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      with tf.name_scope('convert_to_dyn'):
        tensor = tf.reshape(tensor, [stride, -1, dim])
        tensor = tf.transpose(tensor, perm=[1, 0, 2])
        pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
        self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例4
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例5
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      with tf.name_scope('convert_to_dyn'):
        tensor = tf.reshape(tensor, [stride, -1, dim])
        tensor = tf.transpose(tensor, perm=[1, 0, 2])
        pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
        self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例6
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例7
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      with tf.name_scope('convert_to_dyn'):
        tensor = tf.reshape(tensor, [stride, -1, dim])
        tensor = tf.transpose(tensor, perm=[1, 0, 2])
        pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
        self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例8
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例9
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      with tf.name_scope('convert_to_dyn'):
        tensor = tf.reshape(tensor, [stride, -1, dim])
        tensor = tf.transpose(tensor, perm=[1, 0, 2])
        pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
        self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例10
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例11
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      with tf.name_scope('convert_to_dyn'):
        tensor = tf.reshape(tensor, [stride, -1, dim])
        tensor = tf.transpose(tensor, perm=[1, 0, 2])
        pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
        self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例12
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例13
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      with tf.name_scope('convert_to_dyn'):
        tensor = tf.reshape(tensor, [stride, -1, dim])
        tensor = tf.transpose(tensor, perm=[1, 0, 2])
        pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
        self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例14
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例15
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      if dim >= 0:
        # These operations will fail if |dim| is negative.
        with tf.name_scope('convert_to_dyn'):
          tensor = tf.reshape(tensor, [stride, -1, dim])
          tensor = tf.transpose(tensor, perm=[1, 0, 2])
          pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
          self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例16
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError) 
示例17
def __init__(self, tensor=None, array=None, stride=None, dim=None):
    """Creates ops for converting the input to either format.

    If 'tensor' is used, then a conversion from [stride * steps, dim] to
    [steps + 1, stride, dim] is performed for dynamic_tensor reads.

    If 'array' is used, then a conversion from [steps + 1, stride, dim] to
    [stride * steps, dim] is performed for bulk_tensor reads.

    Args:
      tensor: Bulk tensor input.
      array: TensorArray dynamic input.
      stride: stride of bulk tensor. Not used for dynamic.
      dim: dim of bulk tensor. Not used for dynamic.
    """
    if tensor is not None:
      check.IsNone(array, 'Cannot initialize from tensor and array')
      check.NotNone(stride, 'Stride is required for bulk tensor')
      check.NotNone(dim, 'Dim is required for bulk tensor')

      self._bulk_tensor = tensor
      if dim >= 0:
        # These operations will fail if |dim| is negative.
        with tf.name_scope('convert_to_dyn'):
          tensor = tf.reshape(tensor, [stride, -1, dim])
          tensor = tf.transpose(tensor, perm=[1, 0, 2])
          pad = tf.zeros([1, stride, dim], dtype=tensor.dtype)
          self._array_tensor = tf.concat([pad, tensor], 0)

    if array is not None:
      check.IsNone(tensor, 'Cannot initialize from both tensor and array')
      with tf.name_scope('convert_to_bulk'):
        self._bulk_tensor = convert_network_state_tensorarray(array)
      with tf.name_scope('convert_to_dyn'):
        self._array_tensor = array.stack() 
示例18
def testCheckIsNone(self):
    check.IsNone(None, 'foo')
    with self.assertRaisesRegexp(ValueError, 'bar'):
      check.IsNone(1, 'bar')
    with self.assertRaisesRegexp(RuntimeError, 'baz'):
      check.IsNone([], 'baz', RuntimeError)