Python源码示例:skimage.data.astronaut()
示例1
def _prepare_images(path_out, im_size=IMAGE_SIZE):
""" generate and prepare synth. images for registration
:param str path_out: path to the folder
:param tuple(int,int) im_size: desired image size
:return tuple(str,str): paths to target and source image
"""
image = resize(data.astronaut(), output_shape=im_size, mode='constant')
img_target = random_noise(image, var=IMAGE_NOISE)
path_img_target = os.path.join(path_out, NAME_IMAGE_TARGET)
io.imsave(path_img_target, img_target)
# warp synthetic image
tform = AffineTransform(scale=(0.9, 0.9),
rotation=0.2,
translation=(200, -50))
img_source = warp(image, tform.inverse, output_shape=im_size)
img_source = random_noise(img_source, var=IMAGE_NOISE)
path_img_source = os.path.join(path_out, NAME_IMAGE_SOURCE)
io.imsave(path_img_source, img_source)
return path_img_target, path_img_source
示例2
def main():
image = data.astronaut()
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image)
cv2.waitKey(TIME_PER_STEP)
# for value in cycle(np.arange(-255, 255, VAL_PER_STEP)):
for value in np.arange(-255, 255, VAL_PER_STEP):
aug = iaa.AddToHueAndSaturation(value=value)
img_aug = aug.augment_image(image)
img_aug = iaa.pad(img_aug, bottom=40)
img_aug = ia.draw_text(img_aug, x=0, y=img_aug.shape[0]-38, text="value=%d" % (value,), size=30)
cv2.imshow("aug", img_aug)
cv2.waitKey(TIME_PER_STEP)
images_aug = iaa.AddToHueAndSaturation(value=(-255, 255), per_channel=True).augment_images([image] * 64)
ia.imshow(ia.draw_grid(images_aug))
image = ia.quokka_square((128, 128))
images_aug = []
images_aug.extend(iaa.AddToHue().augment_images([image] * 10))
images_aug.extend(iaa.AddToSaturation().augment_images([image] * 10))
ia.imshow(ia.draw_grid(images_aug, rows=2))
示例3
def load_images(n_batches=10, sleep=0.0):
batch_size = 4
astronaut = data.astronaut()
astronaut = ia.imresize_single_image(astronaut, (64, 64))
kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
counter = 0
for i in range(n_batches):
batch_images = []
batch_kps = []
for b in range(batch_size):
astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
batch_images.append(astronaut_text)
batch_kps.append(kps)
counter += 1
batch = ia.Batch(
images=np.array(batch_images, dtype=np.uint8),
keypoints=batch_kps
)
yield batch
if sleep > 0:
time.sleep(sleep)
示例4
def main():
image = data.astronaut()[..., ::-1] # rgb2bgr
print(image.shape)
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image)
cv2.waitKey(TIME_PER_STEP)
for n_segments in cycle(reversed(np.arange(1, 200, SEGMENTS_PER_STEP))):
aug = iaa.Superpixels(p_replace=0.75, n_segments=n_segments)
time_start = time.time()
img_aug = aug.augment_image(image)
print("augmented %d in %.4fs" % (n_segments, time.time() - time_start))
img_aug = ia.draw_text(img_aug, x=5, y=5, text="%d" % (n_segments,))
cv2.imshow("aug", img_aug)
cv2.waitKey(TIME_PER_STEP)
示例5
def main():
img = data.astronaut()
img = ia.imresize_single_image(img, (64, 64))
aug = iaa.Fliplr(0.5)
unseeded1 = aug.draw_grid(img, cols=8, rows=1)
unseeded2 = aug.draw_grid(img, cols=8, rows=1)
iarandom.seed(1000)
seeded1 = aug.draw_grid(img, cols=8, rows=1)
seeded2 = aug.draw_grid(img, cols=8, rows=1)
iarandom.seed(1000)
reseeded1 = aug.draw_grid(img, cols=8, rows=1)
reseeded2 = aug.draw_grid(img, cols=8, rows=1)
iarandom.seed(1001)
reseeded3 = aug.draw_grid(img, cols=8, rows=1)
reseeded4 = aug.draw_grid(img, cols=8, rows=1)
all_rows = np.vstack([unseeded1, unseeded2, seeded1, seeded2, reseeded1, reseeded2, reseeded3, reseeded4])
ia.imshow(all_rows)
示例6
def main():
image = data.astronaut()
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image)
cv2.waitKey(TIME_PER_STEP)
height, width = image.shape[0], image.shape[1]
center_x = width // 2
center_y = height // 2
r = int(min(image.shape[0], image.shape[1]) / 3)
for deg in cycle(np.arange(0, 360, DEG_PER_STEP)):
rad = np.deg2rad(deg-90)
point_x = int(center_x + r * np.cos(rad))
point_y = int(center_y + r * np.sin(rad))
direction = deg / 360
aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=direction)
img_aug = aug.augment_image(image)
img_aug[point_y-POINT_SIZE:point_y+POINT_SIZE+1, point_x-POINT_SIZE:point_x+POINT_SIZE+1, :] =\
np.array([0, 255, 0])
cv2.imshow("aug", img_aug)
cv2.waitKey(TIME_PER_STEP)
示例7
def load_images():
batch_size = 4
astronaut = data.astronaut()
astronaut = eu.imresize_single_image(astronaut, (64, 64))
kps = KeyPointsOnImage([KeyPoint(x=15, y=25)], shape=astronaut.shape)
counter = 0
for i in range(10):
batch_images = []
batch_kps = []
for b in range(batch_size):
batch_images.append(astronaut)
batch_kps.append(kps)
counter += 1
batch = Batch(
images=np.array(batch_images, dtype=np.uint8),
keypoints=batch_kps
)
yield batch
示例8
def main_WithColorspace():
image = data.astronaut()
print("image shape:", image.shape)
aug = WithColorspace(
from_colorspace="RGB",
to_colorspace="HSV",
children=WithChannels(0, Add(50))
)
aug_no_colorspace = WithChannels(0, Add(50))
img_show = np.hstack([
image,
aug.augment_image(image),
aug_no_colorspace.augment_image(image)
])
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", img_show[..., ::-1])
cv2.waitKey(TIME_PER_STEP)
示例9
def load_images():
batch_size = 4
astronaut = data.astronaut()
astronaut = ia.imresize_single_image(astronaut, (64, 64))
kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
counter = 0
for i in range(10):
batch_images = []
batch_kps = []
for b in range(batch_size):
astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
batch_images.append(astronaut_text)
batch_kps.append(kps)
counter += 1
batch = ia.Batch(
images=np.array(batch_images, dtype=np.uint8),
keypoints=batch_kps
)
yield batch
示例10
def main():
image = data.astronaut()[...,::-1] # rgb2bgr
print(image.shape)
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image)
cv2.waitKey(TIME_PER_STEP)
for n_segments in cycle(reversed(np.arange(1, 200, SEGMENTS_PER_STEP))):
aug = iaa.Superpixels(p_replace=0.75, n_segments=n_segments)
time_start = time.time()
img_aug = aug.augment_image(image)
print("augmented %d in %.4fs" % (n_segments, time.time() - time_start))
img_aug = ia.draw_text(img_aug, x=5, y=5, text="%d" % (n_segments,))
cv2.imshow("aug", img_aug)
cv2.waitKey(TIME_PER_STEP)
示例11
def main():
img = data.astronaut()
img = misc.imresize(img, (64, 64))
aug = iaa.Fliplr(0.5)
unseeded1 = aug.draw_grid(img, cols=8, rows=1)
unseeded2 = aug.draw_grid(img, cols=8, rows=1)
ia.seed(1000)
seeded1 = aug.draw_grid(img, cols=8, rows=1)
seeded2 = aug.draw_grid(img, cols=8, rows=1)
ia.seed(1000)
reseeded1 = aug.draw_grid(img, cols=8, rows=1)
reseeded2 = aug.draw_grid(img, cols=8, rows=1)
ia.seed(1001)
reseeded3 = aug.draw_grid(img, cols=8, rows=1)
reseeded4 = aug.draw_grid(img, cols=8, rows=1)
all_rows = np.vstack([unseeded1, unseeded2, seeded1, seeded2, reseeded1, reseeded2, reseeded3, reseeded4])
misc.imshow(all_rows)
示例12
def main():
image = data.astronaut()
print("image shape:", image.shape)
aug = iaa.WithColorspace(
from_colorspace="RGB",
to_colorspace="HSV",
children=iaa.WithChannels(0, iaa.Add(50))
)
aug_no_colorspace = iaa.WithChannels(0, iaa.Add(50))
img_show = np.hstack([
image,
aug.augment_image(image),
aug_no_colorspace.augment_image(image)
])
misc.imshow(img_show)
示例13
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (HEIGHT, WIDTH))
kps = []
for y in range(NB_ROWS):
ycoord = BB_Y1 + int(y * (BB_Y2 - BB_Y1) / (NB_COLS - 1))
for x in range(NB_COLS):
xcoord = BB_X1 + int(x * (BB_X2 - BB_X1) / (NB_ROWS - 1))
kp = (xcoord, ycoord)
kps.append(kp)
kps = set(kps)
kps = [ia.Keypoint(x=xcoord, y=ycoord) for (xcoord, ycoord) in kps]
kps = ia.KeypointsOnImage(kps, shape=image.shape)
bb = ia.BoundingBox(x1=BB_X1, x2=BB_X2, y1=BB_Y1, y2=BB_Y2)
bbs = ia.BoundingBoxesOnImage([bb], shape=image.shape)
seq = iaa.Affine(rotate=45)
seq_det = seq.to_deterministic()
image_aug = seq_det.augment_image(image)
kps_aug = seq_det.augment_keypoints([kps])[0]
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
image_before = np.copy(image)
image_before = kps.draw_on_image(image_before)
image_before = bbs.draw_on_image(image_before)
image_after = np.copy(image_aug)
image_after = kps_aug.draw_on_image(image_after)
image_after = bbs_aug.draw_on_image(image_after)
ia.imshow(np.hstack([image_before, image_after]))
imageio.imwrite("bb_aug.jpg", np.hstack([image_before, image_after]))
示例14
def main():
image = data.astronaut()
print("image shape:", image.shape)
print("Press ENTER or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
children_all = [
("hflip", iaa.Fliplr(1)),
("add", iaa.Add(50)),
("dropout", iaa.Dropout(0.2)),
("affine", iaa.Affine(rotate=35))
]
channels_all = [
None,
0,
[],
[0],
[0, 1],
[1, 2],
[0, 1, 2]
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image[..., ::-1])
cv2.waitKey(TIME_PER_STEP)
for children_title, children in children_all:
for channels in channels_all:
aug = iaa.WithChannels(channels=channels, children=children)
img_aug = aug.augment_image(image)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
title = "children=%s " channels=%s" % (children_title, channels)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例15
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (64, 64))
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
k = [
1,
2,
4,
8,
16,
(8, 8),
(1, 8),
((1, 1), (8, 8)),
((1, 16), (1, 16)),
((1, 16), 1)
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)
for ki in k:
aug = iaa.AverageBlur(k=ki)
img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
img_aug = np.hstack(img_aug)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
title = "k=%s" % (str(ki),)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例16
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (128, 128))
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
configs = [
(1, 75, 75),
(3, 75, 75),
(5, 75, 75),
(10, 75, 75),
(10, 25, 25),
(10, 250, 150),
(15, 75, 75),
(15, 150, 150),
(15, 250, 150),
(20, 75, 75),
(40, 150, 150),
((1, 5), 75, 75),
(5, (10, 250), 75),
(5, 75, (10, 250)),
(5, (10, 250), (10, 250)),
(10, (10, 250), (10, 250)),
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.resizeWindow("aug", 128*NB_AUGS_PER_IMAGE, 128)
for (d, sigma_color, sigma_space) in configs:
aug = iaa.BilateralBlur(d=d, sigma_color=sigma_color, sigma_space=sigma_space)
img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
img_aug = np.hstack(img_aug)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
title = "d=%s, sc=%s, ss=%s" % (str(d), str(sigma_color), str(sigma_space))
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例17
def load_images(n_batches=10, sleep=0.0, draw_text=True):
batch_size = 4
astronaut = data.astronaut()
astronaut = ia.imresize_single_image(astronaut, (64, 64))
kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
counter = 0
for i in range(n_batches):
if draw_text:
batch_images = []
batch_kps = []
for b in range(batch_size):
astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
batch_images.append(astronaut_text)
batch_kps.append(kps)
counter += 1
batch = ia.Batch(
images=np.array(batch_images, dtype=np.uint8),
keypoints=batch_kps
)
else:
if i == 0:
batch_images = np.array([np.copy(astronaut) for _ in range(batch_size)], dtype=np.uint8)
batch = ia.Batch(
images=np.copy(batch_images),
keypoints=[kps.deepcopy() for _ in range(batch_size)]
)
yield batch
if sleep > 0:
time.sleep(sleep)
示例18
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (64, 64))
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
k = [
1,
3,
5,
7,
(3, 3),
(1, 11)
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)
for ki in k:
aug = iaa.MedianBlur(k=ki)
img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
img_aug = np.hstack(img_aug)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
title = "k=%s" % (str(ki),)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例19
def main():
image = data.astronaut()
image = eu.imresize_single_image(image, (128, 128))
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
k = [
1,
3,
5,
7,
(3, 3),
(1, 11)
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.resizeWindow("aug", 128*NB_AUGS_PER_IMAGE, 128)
#cv2.imshow("aug", image[..., ::-1])
#cv2.waitKey(TIME_PER_STEP)
for ki in k:
aug = MedianBlur(k=ki)
img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
img_aug = np.hstack(img_aug)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
#print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))
# title = "k=%s" % (str(ki),)
# img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例20
def main_WithChannels():
image = data.astronaut()
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
children_all = [
("hflip", Fliplr(1)),
("add", Add(50))
]
channels_all = [
None,
0,
[],
[0],
[0, 1],
[1, 2],
[0, 1, 2]
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image[..., ::-1])
cv2.waitKey(TIME_PER_STEP)
for children_title, children in children_all:
for channels in channels_all:
aug = WithChannels(channels=channels, children=children)
img_aug = aug.augment_image(image)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
#print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))
# title = "children=%s " channels=%s" % (children_title, channels)
# img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例21
def main():
image = data.astronaut()
image = eu.imresize_single_image(image, (64, 64))
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
k = [
1,
2,
4,
8,
16,
(8, 8),
(1, 8),
((1, 1), (8, 8)),
((1, 16), (1, 16)),
((1, 16), 1)
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)
#cv2.imshow("aug", image[..., ::-1])
#cv2.waitKey(TIME_PER_STEP)
for ki in k:
aug = AverageBlur(k=ki)
img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
img_aug = np.hstack(img_aug)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
#print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))
# title = "k=%s" % (str(ki),)
# img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例22
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (HEIGHT, WIDTH))
kps = []
for y in range(NB_ROWS):
ycoord = BB_Y1 + int(y * (BB_Y2 - BB_Y1) / (NB_COLS - 1))
for x in range(NB_COLS):
xcoord = BB_X1 + int(x * (BB_X2 - BB_X1) / (NB_ROWS - 1))
kp = (xcoord, ycoord)
kps.append(kp)
kps = set(kps)
kps = [ia.Keypoint(x=xcoord, y=ycoord) for (xcoord, ycoord) in kps]
kps = ia.KeypointsOnImage(kps, shape=image.shape)
bb = ia.BoundingBox(x1=BB_X1, x2=BB_X2, y1=BB_Y1, y2=BB_Y2)
bbs = ia.BoundingBoxesOnImage([bb], shape=image.shape)
seq = iaa.Affine(rotate=45)
seq_det = seq.to_deterministic()
image_aug = seq_det.augment_image(image)
kps_aug = seq_det.augment_keypoints([kps])[0]
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
image_before = np.copy(image)
image_before = kps.draw_on_image(image_before)
image_before = bbs.draw_on_image(image_before)
image_after = np.copy(image_aug)
image_after = kps_aug.draw_on_image(image_after)
image_after = bbs_aug.draw_on_image(image_after)
misc.imshow(np.hstack([image_before, image_after]))
misc.imsave("bb_aug.jpg", np.hstack([image_before, image_after]))
示例23
def main():
image = data.astronaut()
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
children_all = [
("hflip", iaa.Fliplr(1)),
("add", iaa.Add(50)),
("dropout", iaa.Dropout(0.2)),
("affine", iaa.Affine(rotate=35))
]
channels_all = [
None,
0,
[],
[0],
[0, 1],
[1, 2],
[0, 1, 2]
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image[..., ::-1])
cv2.waitKey(TIME_PER_STEP)
for children_title, children in children_all:
for channels in channels_all:
aug = iaa.WithChannels(channels=channels, children=children)
img_aug = aug.augment_image(image)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
#print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))
title = "children=%s " channels=%s" % (children_title, channels)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例24
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (64, 64))
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
k = [
1,
2,
4,
8,
16,
(8, 8),
(1, 8),
((1, 1), (8, 8)),
((1, 16), (1, 16)),
((1, 16), 1)
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)
#cv2.imshow("aug", image[..., ::-1])
#cv2.waitKey(TIME_PER_STEP)
for ki in k:
aug = iaa.AverageBlur(k=ki)
img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
img_aug = np.hstack(img_aug)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
#print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))
title = "k=%s" % (str(ki),)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例25
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (64, 64))
print("image shape:", image.shape)
print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))
k = [
1,
3,
5,
7,
(3, 3),
(1, 11)
]
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)
#cv2.imshow("aug", image[..., ::-1])
#cv2.waitKey(TIME_PER_STEP)
for ki in k:
aug = iaa.MedianBlur(k=ki)
img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
img_aug = np.hstack(img_aug)
print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
#print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))
title = "k=%s" % (str(ki),)
img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)
cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
cv2.waitKey(TIME_PER_STEP)
示例26
def main():
image = data.astronaut()
cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
cv2.imshow("aug", image)
cv2.waitKey(TIME_PER_STEP)
height, width = image.shape[0], image.shape[1]
center_x = width // 2
center_y = height // 2
r = int(min(image.shape[0], image.shape[1]) / 3)
for deg in cycle(np.arange(0, 360, DEG_PER_STEP)):
rad = np.deg2rad(deg-90)
#print(deg, rad)
point_x = int(center_x + r * np.cos(rad))
point_y = int(center_y + r * np.sin(rad))
direction = deg / 360
aug = iaa.DirectedEdgeDetect(alpha=1.0, direction=direction)
img_aug = aug.augment_image(image)
img_aug[point_y-POINT_SIZE:point_y+POINT_SIZE+1, point_x-POINT_SIZE:point_x+POINT_SIZE+1, :] = np.array([0, 255, 0])
#print(point_x, point_y)
cv2.imshow("aug", img_aug)
cv2.waitKey(TIME_PER_STEP)
示例27
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (128, 128))
images = []
params = [
(0.25, 0.25),
(1.0, 0.25),
(2.0, 0.25),
(3.0, 0.25),
(0.25, 0.50),
(1.0, 0.50),
(2.0, 0.50),
(3.0, 0.50),
(0.25, 0.75),
(1.0, 0.75),
(2.0, 0.75),
(3.0, 0.75)
]
for (alpha, sigma) in params:
images_row = []
seqs_row = [
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=0, order=0),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=128, order=0),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=255, order=0),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=0, order=1),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=128, order=1),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=255, order=1),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=0, order=3),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=128, order=3),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="constant", cval=255, order=3),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=0),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=1),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=2),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="nearest", order=3),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=0),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=1),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=2),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="reflect", order=3),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=0),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=1),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=2),
iaa.ElasticTransformation(alpha=alpha, sigma=sigma, mode="wrap", order=3)
]
for seq in seqs_row:
images_row.append(
seq.augment_image(image)
)
images.append(np.hstack(images_row))
misc.imshow(np.vstack(images))
misc.imsave("elastic_transformations.jpg", np.vstack(images))