Python源码示例:numpy.ma.core.MaskedArrayFutureWarning()
示例1
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例2
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例3
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例4
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例5
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例6
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例7
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例8
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例9
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例10
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例11
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例12
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例13
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例14
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例15
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例16
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例17
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例18
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例19
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例20
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))
示例21
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
argsort(arr_0d)
arr_1d = np.array([1, 2, 3]).view(cls)
argsort(arr_1d)
# argsort has a bad default for >1d arrays
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
result = assert_warns(
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
assert_equal(result, argsort(arr_2d, axis=None))
# should be no warnings for explicitly specifying it
argsort(arr_2d, axis=None)
argsort(arr_2d, axis=-1)
示例22
def test_axis_default(self):
# NumPy 1.13, 2017-05-06
data1d = np.ma.arange(6)
data2d = data1d.reshape(2, 3)
ma_min = np.ma.minimum.reduce
ma_max = np.ma.maximum.reduce
# check that the default axis is still None, but warns on 2d arrays
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
assert_equal(result, ma_max(data2d, axis=None))
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
assert_equal(result, ma_min(data2d, axis=None))
# no warnings on 1d, as both new and old defaults are equivalent
result = ma_min(data1d)
assert_equal(result, ma_min(data1d, axis=None))
assert_equal(result, ma_min(data1d, axis=0))
result = ma_max(data1d)
assert_equal(result, ma_max(data1d, axis=None))
assert_equal(result, ma_max(data1d, axis=0))