Python源码示例:nets.nasnet.nasnet.large_imagenet_config()
示例1
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例2
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例3
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例4
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例5
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例6
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例7
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例8
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例9
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例10
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例11
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例12
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例13
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例14
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例15
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例16
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例17
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例18
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例19
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例20
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例21
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random.uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例22
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random.uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])
示例23
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例24
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
_, end_points = nasnet.build_nasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])