def main():
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
dataset = obj_from_dict(cfg.data.test, datasets, dict(test_mode=True))
if args.gpus == 1:
model = build_detector(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
load_checkpoint(model, args.checkpoint, strict=True)
model = MMDataParallel(model, device_ids=[0])
data_loader = build_dataloader(
dataset,
imgs_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
num_gpus=1,
dist=False,
shuffle=False)
outputs = single_test(model, data_loader)
else:
model_args = cfg.model.copy()
model_args.update(train_cfg=None, test_cfg=cfg.test_cfg)
model_type = getattr(detectors, model_args.pop('type'))
outputs = parallel_test(
model_type,
model_args,
args.checkpoint,
dataset,
_data_func,
range(args.gpus),
workers_per_gpu=args.proc_per_gpu)
if args.out:
print('writing results to {}'.format(args.out))
mmcv.dump(outputs, args.out)
eval_type = args.eval
if eval_type:
print('Starting evaluate {}'.format(eval_type))
result_file = osp.join(args.out + '.csv')
results2csv(dataset, outputs, result_file)
ava_eval(result_file, eval_type,
args.label_file, args.ann_file, args.exclude_file)