Python源码示例:inception.slim.losses.l2_loss()

示例1
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例2
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例3
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例4
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例5
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例6
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例7
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例8
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例9
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例10
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例11
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例12
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例13
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例14
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例15
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例16
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例17
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例18
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例19
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5) 
示例20
def testL2Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l2_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L2Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5)