Python源码示例:inception.slim.losses.l1_loss()

示例1
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例2
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例3
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例4
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例5
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例6
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例7
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例8
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例9
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例10
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例11
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例12
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例13
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例14
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例15
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例16
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例17
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例18
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例19
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5) 
示例20
def testL1Loss(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      weights = tf.constant(1.0, shape=shape)
      wd = 0.01
      loss = losses.l1_loss(weights, wd)
      self.assertEquals(loss.op.name, 'L1Loss/value')
      self.assertAlmostEqual(loss.eval(), num_elem * wd, 5)