Python源码示例:inception.slim.losses.l1_l2_regularizer()

示例1
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例2
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例3
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例4
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例5
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例6
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例7
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例8
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例9
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例10
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例11
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例12
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例13
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例14
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例15
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例16
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例17
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例18
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例19
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例20
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例21
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例22
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例23
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例24
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例25
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例26
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例27
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5) 
示例28
def testL1L2Regularizer(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer()(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例29
def testL1L2RegularizerWithScope(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
      self.assertEquals(loss.op.name, 'L1L2/value')
      self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5) 
示例30
def testL1L2RegularizerWithWeights(self):
    with self.test_session():
      shape = [5, 5, 5]
      num_elem = 5 * 5 * 5
      tensor = tf.constant(1.0, shape=shape)
      weight_l1 = 0.01
      weight_l2 = 0.05
      loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
      self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
      self.assertAlmostEqual(loss.eval(),
                             num_elem * weight_l1 + num_elem * weight_l2 / 2, 5)