Python源码示例:dragnn.python.bulk.BulkFeatureExtractorComponentBuilder()

示例1
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例2
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例3
def testConstantFixedFeatureFailsIfNotPretrained(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          is_constant: true
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_training(self.master_state, self.network_states)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=True)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=False) 
示例4
def testNormalFixedFeaturesAreDifferentiable(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          pretrained_embedding_matrix { part {} }
          vocab { part {} }
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Get embedding matrix variables.
      with tf.variable_scope(comp.name, reuse=True):
        fixed_embedding_matrix = tf.get_variable(
            network_units.fixed_embeddings_name(0))

      # Get output layer.
      comp.build_greedy_training(self.master_state, self.network_states)
      activations = self.network_states[comp.name].activations
      outputs = activations[comp.network.layers[0].name].bulk_tensor

      # Compute the gradient of the output layer w.r.t. the embedding matrix.
      # This should be well-defined for in the normal case.
      gradients = tf.gradients(outputs, fixed_embedding_matrix)
      self.assertEqual(len(gradients), 1)
      self.assertFalse(gradients[0] is None) 
示例5
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例6
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例7
def testConstantFixedFeatureFailsIfNotPretrained(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          is_constant: true
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_training(self.master_state, self.network_states)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=True)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=False) 
示例8
def testNormalFixedFeaturesAreDifferentiable(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          pretrained_embedding_matrix { part {} }
          vocab { part {} }
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Get embedding matrix variables.
      with tf.variable_scope(comp.name, reuse=True):
        fixed_embedding_matrix = tf.get_variable(
            network_units.fixed_embeddings_name(0))

      # Get output layer.
      comp.build_greedy_training(self.master_state, self.network_states)
      activations = self.network_states[comp.name].activations
      outputs = activations[comp.network.layers[0].name].bulk_tensor

      # Compute the gradient of the output layer w.r.t. the embedding matrix.
      # This should be well-defined for in the normal case.
      gradients = tf.gradients(outputs, fixed_embedding_matrix)
      self.assertEqual(len(gradients), 1)
      self.assertFalse(gradients[0] is None) 
示例9
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例10
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例11
def testConstantFixedFeatureFailsIfNotPretrained(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          is_constant: true
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_training(self.master_state, self.network_states)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=True)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=False) 
示例12
def testNormalFixedFeaturesAreDifferentiable(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          pretrained_embedding_matrix { part {} }
          vocab { part {} }
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Get embedding matrix variables.
      with tf.variable_scope(comp.name, reuse=True):
        fixed_embedding_matrix = tf.get_variable(
            network_units.fixed_embeddings_name(0))

      # Get output layer.
      comp.build_greedy_training(self.master_state, self.network_states)
      activations = self.network_states[comp.name].activations
      outputs = activations[comp.network.layers[0].name].bulk_tensor

      # Compute the gradient of the output layer w.r.t. the embedding matrix.
      # This should be well-defined for in the normal case.
      gradients = tf.gradients(outputs, fixed_embedding_matrix)
      self.assertEqual(len(gradients), 1)
      self.assertFalse(gradients[0] is None) 
示例13
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例14
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例15
def testConstantFixedFeatureFailsIfNotPretrained(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          is_constant: true
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_training(self.master_state, self.network_states)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=True)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=False) 
示例16
def testNormalFixedFeaturesAreDifferentiable(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          pretrained_embedding_matrix { part {} }
          vocab { part {} }
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Get embedding matrix variables.
      with tf.variable_scope(comp.name, reuse=True):
        fixed_embedding_matrix = tf.get_variable(
            network_units.fixed_embeddings_name(0))

      # Get output layer.
      comp.build_greedy_training(self.master_state, self.network_states)
      activations = self.network_states[comp.name].activations
      outputs = activations[comp.network.layers[0].name].bulk_tensor

      # Compute the gradient of the output layer w.r.t. the embedding matrix.
      # This should be well-defined for in the normal case.
      gradients = tf.gradients(outputs, fixed_embedding_matrix)
      self.assertEqual(len(gradients), 1)
      self.assertFalse(gradients[0] is None) 
示例17
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例18
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例19
def testConstantFixedFeatureFailsIfNotPretrained(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          is_constant: true
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_training(self.master_state, self.network_states)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=True)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=False) 
示例20
def testNormalFixedFeaturesAreDifferentiable(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          pretrained_embedding_matrix { part {} }
          vocab { part {} }
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Get embedding matrix variables.
      with tf.variable_scope(comp.name, reuse=True):
        fixed_embedding_matrix = tf.get_variable(
            network_units.fixed_embeddings_name(0))

      # Get output layer.
      comp.build_greedy_training(self.master_state, self.network_states)
      activations = self.network_states[comp.name].activations
      outputs = activations[comp.network.layers[0].name].bulk_tensor

      # Compute the gradient of the output layer w.r.t. the embedding matrix.
      # This should be well-defined for in the normal case.
      gradients = tf.gradients(outputs, fixed_embedding_matrix)
      self.assertEqual(len(gradients), 1)
      self.assertFalse(gradients[0] is None) 
示例21
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例22
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例23
def testConstantFixedFeatureFailsIfNotPretrained(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          is_constant: true
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_training(self.master_state, self.network_states)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=True)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=False) 
示例24
def testNormalFixedFeaturesAreDifferentiable(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          pretrained_embedding_matrix { part {} }
          vocab { part {} }
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Get embedding matrix variables.
      with tf.variable_scope(comp.name, reuse=True):
        fixed_embedding_matrix = tf.get_variable(
            network_units.fixed_embeddings_name(0))

      # Get output layer.
      comp.build_greedy_training(self.master_state, self.network_states)
      activations = self.network_states[comp.name].activations
      outputs = activations[comp.network.layers[0].name].bulk_tensor

      # Compute the gradient of the output layer w.r.t. the embedding matrix.
      # This should be well-defined for in the normal case.
      gradients = tf.gradients(outputs, fixed_embedding_matrix)
      self.assertEqual(len(gradients), 1)
      self.assertFalse(gradients[0] is None) 
示例25
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(NotImplementedError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例26
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Expect feature extraction to generate a error due to the "history"
      # translator.
      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    with tf.Graph().as_default():
      comp = bulk_component.BulkAnnotatorComponentBuilder(
          self.master, component_spec)

      with self.assertRaises(RuntimeError):
        comp.build_greedy_training(self.master_state, self.network_states) 
示例27
def testConstantFixedFeatureFailsIfNotPretrained(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          is_constant: true
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_training(self.master_state, self.network_states)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=True)
      with self.assertRaisesRegexp(ValueError,
                                   'Constant embeddings must be pretrained'):
        comp.build_greedy_inference(
            self.master_state, self.network_states, during_training=False) 
示例28
def testNormalFixedFeaturesAreDifferentiable(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        fixed_feature {
          name: "fixed" embedding_dim: 32 size: 1
          pretrained_embedding_matrix { part {} }
          vocab { part {} }
        }
        component_builder {
          registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
        }
        """, component_spec)
    with tf.Graph().as_default():
      comp = bulk_component.BulkFeatureExtractorComponentBuilder(
          self.master, component_spec)

      # Get embedding matrix variables.
      with tf.variable_scope(comp.name, reuse=True):
        fixed_embedding_matrix = tf.get_variable(
            network_units.fixed_embeddings_name(0))

      # Get output layer.
      comp.build_greedy_training(self.master_state, self.network_states)
      activations = self.network_states[comp.name].activations
      outputs = activations[comp.network.layers[0].name].bulk_tensor

      # Compute the gradient of the output layer w.r.t. the embedding matrix.
      # This should be well-defined for in the normal case.
      gradients = tf.gradients(outputs, fixed_embedding_matrix)
      self.assertEqual(len(gradients), 1)
      self.assertFalse(gradients[0] is None) 
示例29
def testFailsOnNonIdentityTranslator(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "IdentityNetwork"
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "history"
          source_component: "mock"
        }
        """, component_spec)

    # For feature extraction:
    comp = bulk_component.BulkFeatureExtractorComponentBuilder(
        self.master, component_spec)

    # Expect feature extraction to generate a error due to the "history"
    # translator.
    with self.assertRaises(NotImplementedError):
      comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    self.setUp()
    comp = bulk_component.BulkAnnotatorComponentBuilder(self.master,
                                                        component_spec)

    with self.assertRaises(NotImplementedError):
      comp.build_greedy_training(self.master_state, self.network_states) 
示例30
def testFailsOnRecurrentLinkedFeature(self):
    component_spec = spec_pb2.ComponentSpec()
    text_format.Parse("""
        name: "test"
        network_unit {
          registered_name: "FeedForwardNetwork"
          parameters {
            key: 'hidden_layer_sizes' value: '64'
          }
        }
        linked_feature {
          name: "features" embedding_dim: -1 size: 1
          source_translator: "identity"
          source_component: "test"
          source_layer: "layer_0"
        }
        """, component_spec)

    # For feature extraction:
    comp = bulk_component.BulkFeatureExtractorComponentBuilder(
        self.master, component_spec)

    # Expect feature extraction to generate a error due to the "history"
    # translator.
    with self.assertRaises(RuntimeError):
      comp.build_greedy_training(self.master_state, self.network_states)

    # As well as annotation:
    self.setUp()
    comp = bulk_component.BulkAnnotatorComponentBuilder(self.master,
                                                        component_spec)

    with self.assertRaises(RuntimeError):
      comp.build_greedy_training(self.master_state, self.network_states)