Python源码示例:detectron.utils.vis.convert_from_cls_format()

示例1
def run_model_cfg(args, im, check_blobs):
    workspace.ResetWorkspace()
    model, _ = load_model(args)
    with c2_utils.NamedCudaScope(0):
        cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all(
            model, im, None, None,
        )

    boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format(
        cls_boxes, cls_segms, cls_keyps)

    # sort the results based on score for comparision
    boxes, segms, keypoints, classes = _sort_results(
        boxes, segms, keypoints, classes)

    # write final results back to workspace
    def _ornone(res):
        return np.array(res) if res is not None else np.array([], dtype=np.float32)
    with c2_utils.NamedCudaScope(0):
        workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes))
        workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms))
        workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints))
        workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes))

    # get result blobs
    with c2_utils.NamedCudaScope(0):
        ret = _get_result_blobs(check_blobs)

    return ret 
示例2
def run_model_cfg(args, im, check_blobs):
    workspace.ResetWorkspace()
    model, _ = load_model(args)
    with c2_utils.NamedCudaScope(0):
        cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all(
            model, im, None, None,
        )

    boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format(
        cls_boxes, cls_segms, cls_keyps)

    # sort the results based on score for comparision
    boxes, segms, keypoints, classes = _sort_results(
        boxes, segms, keypoints, classes)

    # write final results back to workspace
    def _ornone(res):
        return np.array(res) if res is not None else np.array([], dtype=np.float32)
    with c2_utils.NamedCudaScope(0):
        workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes))
        workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms))
        workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints))
        workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes))

    # get result blobs
    with c2_utils.NamedCudaScope(0):
        ret = _get_result_blobs(check_blobs)

    return ret 
示例3
def run_model_cfg(args, im, check_blobs):
    workspace.ResetWorkspace()
    model, _ = load_model(args)
    with c2_utils.NamedCudaScope(0):
        cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all(
            model, im, None, None,
        )

    boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format(
        cls_boxes, cls_segms, cls_keyps)

    # sort the results based on score for comparision
    boxes, segms, keypoints, classes = _sort_results(
        boxes, segms, keypoints, classes)

    # write final results back to workspace
    def _ornone(res):
        return np.array(res) if res is not None else np.array([], dtype=np.float32)
    with c2_utils.NamedCudaScope(0):
        workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes))
        workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms))
        workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints))
        workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes))

    # get result blobs
    with c2_utils.NamedCudaScope(0):
        ret = _get_result_blobs(check_blobs)

    return ret 
示例4
def run_model_cfg(args, im, check_blobs):
    workspace.ResetWorkspace()
    model, _ = load_model(args)
    with c2_utils.NamedCudaScope(0):
        cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all(
            model, im, None, None
        )

    boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format(
        cls_boxes, cls_segms, cls_keyps
    )

    # sort the results based on score for comparision
    boxes, segms, keypoints, classes = _sort_results(boxes, segms, keypoints, classes)

    # write final results back to workspace
    def _ornone(res):
        return np.array(res) if res is not None else np.array([], dtype=np.float32)

    with c2_utils.NamedCudaScope(0):
        workspace.FeedBlob(core.ScopedName("result_boxes"), _ornone(boxes))
        workspace.FeedBlob(core.ScopedName("result_segms"), _ornone(segms))
        workspace.FeedBlob(core.ScopedName("result_keypoints"), _ornone(keypoints))
        workspace.FeedBlob(core.ScopedName("result_classids"), _ornone(classes))

    # get result blobs
    with c2_utils.NamedCudaScope(0):
        ret = _get_result_blobs(check_blobs)

    return ret 
示例5
def run_model_cfg(args, im, check_blobs):
    workspace.ResetWorkspace()
    model, _ = load_model(args)
    with c2_utils.NamedCudaScope(0):
        cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all(
            model, im, None, None,
        )

    boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format(
        cls_boxes, cls_segms, cls_keyps)

    # sort the results based on score for comparision
    boxes, segms, keypoints, classes = _sort_results(
        boxes, segms, keypoints, classes)

    # write final results back to workspace
    def _ornone(res):
        return np.array(res) if res is not None else np.array([], dtype=np.float32)
    with c2_utils.NamedCudaScope(0):
        workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes))
        workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms))
        workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints))
        workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes))

    # get result blobs
    with c2_utils.NamedCudaScope(0):
        ret = _get_result_blobs(check_blobs)

    return ret 
示例6
def run_model_cfg(args, im, check_blobs):
    workspace.ResetWorkspace()
    model, _ = load_model(args)
    with c2_utils.NamedCudaScope(0):
        cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all(
            model, im, None, None,
        )

    boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format(
        cls_boxes, cls_segms, cls_keyps)

    # sort the results based on score for comparision
    boxes, segms, keypoints, classes = _sort_results(
        boxes, segms, keypoints, classes)

    # write final results back to workspace
    def _ornone(res):
        return np.array(res) if res is not None else np.array([], dtype=np.float32)
    with c2_utils.NamedCudaScope(0):
        workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes))
        workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms))
        workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints))
        workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes))

    # get result blobs
    with c2_utils.NamedCudaScope(0):
        ret = _get_result_blobs(check_blobs)

    return ret