Python源码示例:config.cfg.DATA_DIR

示例1
def Get_Next_Instance_HO_Neg_HICO(trainval_GT, Trainval_Neg, iter, Pos_augment, Neg_select, Data_length):

    GT       = trainval_GT[iter%Data_length]
    image_id = GT[0]
    im_file = cfg.DATA_DIR + '/' + 'hico_20160224_det/images/train2015/HICO_train2015_' + (str(image_id)).zfill(8) + '.jpg'
    im       = cv2.imread(im_file)
    im_orig  = im.astype(np.float32, copy=True)
    im_orig -= cfg.PIXEL_MEANS
    im_shape = im_orig.shape
    im_orig  = im_orig.reshape(1, im_shape[0], im_shape[1], 3)

    Pattern, Human_augmented, Object_augmented, action_HO, num_pos = Augmented_HO_Neg_HICO(GT, Trainval_Neg, im_shape, Pos_augment, Neg_select)
    
    blobs = {}
    blobs['image']       = im_orig
    blobs['H_boxes']     = Human_augmented
    blobs['O_boxes']     = Object_augmented
    blobs['gt_class_HO'] = action_HO
    blobs['sp']          = Pattern
    blobs['H_num']       = num_pos

    return blobs 
示例2
def parse_arg():
    """
    parse input arguments
    """
    parser = argparse.ArgumentParser(description="Train CapsNet")

    parser.add_argument('--data_dir', dest='data_dir',
                        type=str, default=cfg.DATA_DIR,
                        help='Directory for storing input data')
    parser.add_argument('--ckpt', dest='ckpt',
                        type=str, default=None,
                        help='path to the directory of check point')
    parser.add_argument('--max_iters', dest='max_iters', type=int,
                        default=10000, help='max of training iterations')
    parser.add_argument('--batch_size', dest='batch_size', type=int,
                        default=100, help='training batch size')

    # if len(sys.argv) == 1:
    #     parser.print_help()
    #     sys.exit(1)

    args = parser.parse_args()
    return args 
示例3
def process_glove(vocab_list, save_path, size=4e5, random_init=True):
    """
    :param vocab_list: [vocab]
    :return:
    """
    if not gfile.Exists(save_path + ".npz"):
        glove_path = os.path.join(cfg.DATA_DIR, "glove.6B.{}d.txt".format(cfg.GLOVE_DIM))
        if random_init:
            glove = np.random.randn(len(vocab_list), cfg.GLOVE_DIM)
        else:
            glove = np.zeros((len(vocab_list), cfg.GLOVE_DIM))
        found = 0
        with open(glove_path, 'r') as fh:
            for line in tqdm(fh, total=size):
                array = line.lstrip().rstrip().split(" ")
                word = array[0]
                vector = list(map(float, array[1:]))
                if word in vocab_list:
                    idx = vocab_list.index(word)
                    glove[idx, :] = vector
                    found += 1
                if word.capitalize() in vocab_list:
                    idx = vocab_list.index(word.capitalize())
                    glove[idx, :] = vector
                    found += 1
                if word.upper() in vocab_list:
                    idx = vocab_list.index(word.upper())
                    glove[idx, :] = vector
                    found += 1

        print("{}/{} of word vocab have corresponding vectors in {}".format(found, len(vocab_list), glove_path))
        np.savez_compressed(save_path, glove=glove)
        print("saved trimmed glove matrix at: {}".format(save_path)) 
示例4
def Get_Next_Instance_HO_Neg(trainval_GT, Trainval_Neg, iter, Pos_augment, Neg_select, Data_length):

    GT       = trainval_GT[iter%Data_length]
    image_id = GT[0]
    im_file  = cfg.DATA_DIR + '/' + 'v-coco/coco/images/train2014/COCO_train2014_' + (str(image_id)).zfill(12) + '.jpg'
    im       = cv2.imread(im_file)
    im_orig  = im.astype(np.float32, copy=True)
    im_orig -= cfg.PIXEL_MEANS
    im_shape = im_orig.shape
    im_orig  = im_orig.reshape(1, im_shape[0], im_shape[1], 3)


    Pattern, Human_augmented, Human_augmented_solo, Object_augmented, action_HO, action_H, mask_HO, mask_H = Augmented_HO_Neg(GT, Trainval_Neg, im_shape, Pos_augment, Neg_select)
    
    blobs = {}
    blobs['image']       = im_orig
    blobs['H_boxes_solo']= Human_augmented_solo
    blobs['H_boxes']     = Human_augmented
    blobs['O_boxes']     = Object_augmented
    blobs['gt_class_HO'] = action_HO
    blobs['gt_class_H']  = action_H
    blobs['Mask_HO']     = mask_HO
    blobs['Mask_H']      = mask_H
    blobs['sp']          = Pattern
    blobs['H_num']       = len(action_H)

    return blobs 
示例5
def Get_Next_Instance_HO_spNeg(trainval_GT, Trainval_Neg, iter, Pos_augment, Neg_select, Data_length):

    GT       = trainval_GT[iter%Data_length]
    image_id = GT[0]
    im_file  = cfg.DATA_DIR + '/' + 'v-coco/coco/images/train2014/COCO_train2014_' + (str(image_id)).zfill(12) + '.jpg'
    im       = cv2.imread(im_file)
    im_orig  = im.astype(np.float32, copy=True)
    im_orig -= cfg.PIXEL_MEANS
    im_shape = im_orig.shape
    im_orig  = im_orig.reshape(1, im_shape[0], im_shape[1], 3)


    Pattern, Human_augmented_sp, Human_augmented, Object_augmented, action_sp, action_HO, action_H, mask_sp, mask_HO, mask_H = Augmented_HO_spNeg(GT, Trainval_Neg, im_shape, Pos_augment, Neg_select)
    
    blobs = {}
    blobs['image']       = im_orig
    blobs['H_boxes']     = Human_augmented
    blobs['Hsp_boxes']   = Human_augmented_sp
    blobs['O_boxes']     = Object_augmented
    blobs['gt_class_sp'] = action_sp
    blobs['gt_class_HO'] = action_HO
    blobs['gt_class_H']  = action_H
    blobs['Mask_sp']     = mask_sp
    blobs['Mask_HO']     = mask_HO
    blobs['Mask_H']      = mask_H
    blobs['sp']          = Pattern
    blobs['H_num']       = len(action_H)

    return blobs 
示例6
def align_model(self):
        blender_model = self.load_ply_model(self.blender_model_path)
        orig_model = self.load_orig_model()
        blender_model = np.dot(blender_model, self.rotation_transform.T)
        blender_model += (np.mean(orig_model, axis=0) - np.mean(blender_model, axis=0))
        np.savetxt(os.path.join(cfg.DATA_DIR, 'blender_model.txt'), blender_model)
        np.savetxt(os.path.join(cfg.DATA_DIR, 'orig_model.txt'), orig_model) 
示例7
def __init__(self, class_type):
        self.class_type = class_type
        self.mask_path = os.path.join(cfg.LINEMOD,'{}/mask/*.png'.format(class_type))
        self.dir_path = os.path.join(cfg.LINEMOD_ORIG,'{}/data'.format(class_type))

        dataset_pose_dir_path = os.path.join(cfg.DATA_DIR, 'dataset_poses')
        os.system('mkdir -p {}'.format(dataset_pose_dir_path))
        self.dataset_poses_path = os.path.join(dataset_pose_dir_path, '{}_poses.npy'.format(class_type))
        blender_pose_dir_path = os.path.join(cfg.DATA_DIR, 'blender_poses')
        os.system('mkdir -p {}'.format(blender_pose_dir_path))
        self.blender_poses_path = os.path.join(blender_pose_dir_path, '{}_poses.npy'.format(class_type))
        os.system('mkdir -p {}'.format(blender_pose_dir_path))

        self.pose_transformer = PoseTransformer(class_type) 
示例8
def __init__(self, class_type):
        super(YCBDataStatistics, self).__init__(class_type)
        self.dir_path = os.path.join(cfg.LINEMOD_ORIG, '{}/data'.format(class_type))
        self.class_types = np.loadtxt(os.path.join(cfg.YCB, 'image_sets/classes.txt'), dtype=np.str)
        self.class_types = np.insert(self.class_types, 0, 'background')
        self.train_set = np.loadtxt(os.path.join(cfg.YCB, 'image_sets/train.txt'), dtype=np.str)
        self.meta_pattern = os.path.join(cfg.YCB, 'data/{}-meta.mat')
        self.dataset_poses_pattern = os.path.join(cfg.DATA_DIR, 'dataset_poses/{}_poses.npy') 
示例9
def __init__(self, class_type):
        self.class_type = class_type
        self.bg_imgs_path = os.path.join(cfg.DATA_DIR, 'bg_imgs.npy')
        self.poses_path = os.path.join(cfg.DATA_DIR, 'blender_poses', '{}_poses.npy').format(class_type)
        self.output_dir_path = os.path.join(cfg.LINEMOD,'renders/{}').format(class_type)
        self.blender_path = cfg.BLENDER_PATH
        self.blank_blend = os.path.join(cfg.DATA_DIR, 'blank.blend')
        self.py_path = os.path.join(cfg.BLENDER_DIR, 'render_backend.py')
        self.obj_path = os.path.join(cfg.LINEMOD,'{}/{}.ply').format(class_type, class_type)
        self.plane_height_path = os.path.join(cfg.DATA_DIR, 'plane_height.pkl') 
示例10
def __init__(self, class_type):
        super(YCBRenderer, self).__init__(class_type)
        self.output_dir_path = os.path.join(cfg.YCB, 'renders/{}').format(class_type)
        self.blank_blend = os.path.join(cfg.DATA_DIR, 'blank.blend')
        self.obj_path = os.path.join(cfg.YCB, 'models', class_type, 'textured.obj')
        self.class_types = np.loadtxt(os.path.join(cfg.YCB, 'image_sets/classes.txt'), dtype=np.str)
        self.class_types = np.insert(self.class_types, 0, 'background') 
示例11
def parse_arg():
    """
    parse input arguments
    """
    parser = argparse.ArgumentParser(description="Train CapsNet")

    parser.add_argument('--data_dir', dest='data_dir',
                        type=str, default=cfg.DATA_DIR,
                        help='Directory for storing input data')
    parser.add_argument('--ckpt', dest='ckpt',
                        type=str, default=cfg.TRAIN_DIR,
                        help='path to the directory of check point')
    parser.add_argument('--mode', dest='mode',
                        type=str, default=None,
                        help='evaluation mode: reconstruct, cap_tweak, adversarial')
    parser.add_argument('--batch_size', dest='batch_size', type=int,
                        default=30, help='batch size for reconstruct evaluation')
    parser.add_argument('--max_iters', dest='max_iters', type=int,
                        default=50, help='batch size for reconstruct evaluation')
    parser.add_argument('--tweak_target', dest='tweak_target', type=int,
                        default=None, help='target number for capsule tweaking experiment')
    parser.add_argument('--fig_dir', dest='fig_dir', type=str,
                        default='../figs', help='directory to save figures')
    parser.add_argument('--lr', dest='lr', type=float,
                        default=1, help='learning rate of adversarial test')

    args = parser.parse_args()

    if len(sys.argv) == 1 or \
                    args.mode not in \
                    ('reconstruct', 'cap_tweak', 'adversarial'):
        parser.print_help()
        sys.exit(1)
    return args