Python源码示例:chainer.links.ConvolutionND()

示例1
def __init__(self, traj_dim_in):
        chan_traj_c0_c1 = 16
        chan_traj_c1_d0 = 32
        units_traj_d0_d1 = 32
        units_traj_d1_d2 = 16

        # This means, 1 input dimension (so we convolve along the temporal axis) and treat
        # each feature dimension as a channel. The temporal axis is always the same length
        # since this is fixed with a buffer that keeps track of the latest data.
        traj_c0 = L.ConvolutionND(
            ndim=1, in_channels=traj_dim_in, out_channels=chan_traj_c0_c1, ksize=6, stride=5)
        traj_c1 = L.ConvolutionND(
            ndim=1, in_channels=chan_traj_c0_c1, out_channels=chan_traj_c1_d0, ksize=4, stride=2)
        traj_d0 = L.Linear(in_size=chan_traj_c1_d0, out_size=units_traj_d0_d1)
        loss_d0 = L.Linear(in_size=traj_dim_in + units_traj_d0_d1, out_size=units_traj_d1_d2)
        loss_d1 = L.Linear(in_size=units_traj_d1_d2, out_size=1)

        Loss.__init__(self,
                      # trajectory processing
                      traj_c0=traj_c0, traj_c1=traj_c1, traj_d0=traj_d0,
                      # loss processing
                      loss_d0=loss_d0, loss_d1=loss_d1) 
示例2
def __init__(self, ndim, nobias):
        super(ConvND, self).__init__()
        with self.init_scope():
            self.l1 = L.ConvolutionND(ndim, 7, 10, 3,
                                      stride=1, pad=1, nobias=nobias) 
示例3
def __init__(self, nb_in, nb_out, ksize=1, pad=0, no_bn=False):
        super(Conv_BN, self).__init__()
        self.no_bn = no_bn
        with self.init_scope():
            self.conv = L.ConvolutionND(1, nb_in, nb_out, ksize=ksize, pad=pad)
            if not no_bn:
                self.bn = L.BatchNormalization(nb_out) 
示例4
def __init__(self, nb_in, nb_out, ksize=1, pad=0, no_bn=False):
        super(Conv_BN, self).__init__()
        self.no_bn = no_bn
        with self.init_scope():
            self.conv = L.ConvolutionND(1, nb_in, nb_out, ksize=ksize, pad=pad)
            if not no_bn:
                self.bn = L.BatchNormalization(nb_out) 
示例5
def __init__(self, vocab, vocab_ngram_tokens, n_units, n_units_char,
                 dropout, subword):  # dropout ratio, zero indicates no dropout
        super(CNN1D, self).__init__()
        with self.init_scope():
            self.subword = subword
            # n_units_char = 15
            self.embed = L.EmbedID(
                len(vocab_ngram_tokens.lst_words) + 2, n_units_char,
                initialW=I.Uniform(1. / n_units_char))  # ngram tokens embedding  plus 2 for OOV and end symbol.

            self.n_ngram = vocab_ngram_tokens.metadata["max_gram"] - vocab_ngram_tokens.metadata["min_gram"] + 1

            # n_filters = {i: min(200, i * 5) for i in range(1, 1 + 1)}
            # self.cnns = (L.Convolution2D(1, v, (k, n_units_char),) for k, v in n_filters.items())
            # self.out = L.Linear(sum([v for k, v in n_filters.items()]), n_units)
            if 'small' in self.subword:
                self.cnn1 = L.ConvolutionND(1, n_units_char, 50, (1,), )
                self.out = L.Linear(50, n_units)
            else:
                self.cnn1 = L.ConvolutionND(1, n_units_char, 50, (1,), )
                self.cnn2 = L.ConvolutionND(1, n_units_char, 100, (2,), )
                self.cnn3 = L.ConvolutionND(1, n_units_char, 150, (3,), )
                self.cnn4 = L.ConvolutionND(1, n_units_char, 200, (4,), )
                self.cnn5 = L.ConvolutionND(1, n_units_char, 200, (5,), )
                self.cnn6 = L.ConvolutionND(1, n_units_char, 200, (6,), )
                self.cnn7 = L.ConvolutionND(1, n_units_char, 200, (7,), )
                self.out = L.Linear(1100, n_units)

            self.dropout = dropout
            self.vocab = vocab
            self.vocab_ngram_tokens = vocab_ngram_tokens 
示例6
def __init__(self, out_ch=128):
        super(FeatureVoxelNet, self).__init__(
            conv1 = L.ConvolutionND(1, 7, 16, 1, nobias=True),
            conv2 = L.ConvolutionND(1, 32, 64, 1, nobias=True),
            conv3 = L.ConvolutionND(1, 128, out_ch, 1),
            bn1 = BN(16), #L.BatchNormalization(16),
            bn2 = BN(64)) #L.BatchNormalization(64),
            #bn3 = BN(out_ch)) #L.BatchNormalization(out_ch)) 
示例7
def __init__(self, in_ch=128, out_ch=64):
        super(MiddleLayers, self).__init__(
            conv1 = L.ConvolutionND(3, in_ch, 32, (3, 1, 1), (2, 1, 1), (0, 0, 0), nobias=True),
            conv2 = L.ConvolutionND(3, 32, 64, (1, 3, 3), (1, 1, 1), (0, 1, 1), nobias=True),
            conv3 = L.ConvolutionND(3, 64, 32, (3, 1, 1), 1, (0, 0, 0), nobias=True),
            conv4 = L.ConvolutionND(3, 32, 64, (1, 3, 3), 1, (0, 1, 1), nobias=True),
            conv5 = L.ConvolutionND(3, 64, out_ch, (2, 3, 3), (1, 1, 1), (0, 1, 1), nobias=True),
            bn1 = L.BatchNormalization(32),
            bn2 = L.BatchNormalization(64),
            bn3 = L.BatchNormalization(32),
            bn4 = L.BatchNormalization(64),
            bn5 = L.BatchNormalization(out_ch)) 
示例8
def __init__(self, out_ch=128):
        super(FeatureVoxelNet_v2, self).__init__(
            conv1 = L.ConvolutionND(1, 7, out_ch, 1, nobias=True))
            # conv2 = L.ConvolutionND(1, 32, 64, 1, nobias=True),
            # conv3 = L.ConvolutionND(1, 128, out_ch, 1, nobias=True)) 
示例9
def __init__(self, out_ch=128):
        super(FeatureVoxelNet_v6, self).__init__(
            conv1 = L.ConvolutionND(1, 7, 32, 1, nobias=True),
	        conv2 = L.ConvolutionND(1, 64, out_ch, 1),
            # conv3 = L.ConvolutionND(1, 128, out_ch, 1, nobias=True),
	        bn1 = L.BatchNormalization(32))
	        # bn2 = L.BatchNormalization(out_ch))
	        # bn3 = L.BatchNormalization(out_ch)) 
示例10
def __init__(self, out_ch=128):
        super(OrigFeatureVoxelNet, self).__init__(
            conv1 = L.ConvolutionND(1, 7, 16, 1, nobias=True),
            conv2 = L.ConvolutionND(1, 32, 64, 1, nobias=True),
            conv3 = L.ConvolutionND(1, 128, out_ch, 1),
            bn1 = BN(16), #L.BatchNormalization(16),
            bn2 = BN(64)) #L.BatchNormalization(64),
            # bn3 = BN(out_ch)) #L.BatchNormalization(out_ch)) 
示例11
def __init__(self):
        initW = chainer.initializers.HeNormal(scale=0.01)
        super().__init__()

        with self.init_scope():
            self.bnorm1 = L.BatchNormalization(size=64)
            self.conv1 = L.ConvolutionND(3, 64, 64, 3, pad=1, initialW=initW)
            self.bnorm2 = L.BatchNormalization(size=64)
            self.conv2 = L.ConvolutionND(3, 64, 64, 3, pad=1, initialW=initW) 
示例12
def __init__(self, in_channels=1, n_classes=4):
        init = chainer.initializers.HeNormal(scale=0.01)
        super().__init__()

        with self.init_scope():
            self.conv1a = L.ConvolutionND(
                3, in_channels, 32, 3, pad=1, initialW=init)
            self.bnorm1a = L.BatchNormalization(32)
            self.conv1b = L.ConvolutionND(
                3, 32, 32, 3, pad=1, initialW=init)
            self.bnorm1b = L.BatchNormalization(32)
            self.conv1c = L.ConvolutionND(
                3, 32, 64, 3, stride=2, pad=1, initialW=init)
            self.voxres2 = VoxResModule()
            self.voxres3 = VoxResModule()
            self.bnorm3 = L.BatchNormalization(64)
            self.conv4 = L.ConvolutionND(
                3, 64, 64, 3, stride=2, pad=1, initialW=init)
            self.voxres5 = VoxResModule()
            self.voxres6 = VoxResModule()
            self.bnorm6 = L.BatchNormalization(64)
            self.conv7 = L.ConvolutionND(
                3, 64, 64, 3, stride=2, pad=1, initialW=init)
            self.voxres8 = VoxResModule()
            self.voxres9 = VoxResModule()
            self.c1deconv = L.DeconvolutionND(
                3, 32, 32, 3, pad=1, initialW=init)
            self.c1conv = L.ConvolutionND(
                3, 32, n_classes, 3, pad=1, initialW=init)
            self.c2deconv = L.DeconvolutionND(
                3, 64, 64, 4, stride=2, pad=1, initialW=init)
            self.c2conv = L.ConvolutionND(
                3, 64, n_classes, 3, pad=1, initialW=init)
            self.c3deconv = L.DeconvolutionND(
                3, 64, 64, 6, stride=4, pad=1, initialW=init)
            self.c3conv = L.ConvolutionND(
                3, 64, n_classes, 3, pad=1, initialW=init)
            self.c4deconv = L.DeconvolutionND(
                3, 64, 64, 10, stride=8, pad=1, initialW=init)
            self.c4conv = L.ConvolutionND(
                3, 64, n_classes, 3, pad=1, initialW=init) 
示例13
def __init__(self, in_channels, top_width, mid_ch, wscale=0.01):
        super(VideoDiscriminatorInitUniform, self).__init__()
        w = chainer.initializers.Uniform(wscale)
        with self.init_scope():
            self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w)
            self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w)
            self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w)
            self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w)
            self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w)
            self.bn0 = L.BatchNormalization(mid_ch)
            self.bn1 = L.BatchNormalization(mid_ch * 2)
            self.bn2 = L.BatchNormalization(mid_ch * 4)
            self.bn3 = L.BatchNormalization(mid_ch * 8) 
示例14
def __init__(self, in_channels, top_width, mid_ch):
        super(VideoDiscriminatorInitDefault, self).__init__()
        w = None
        with self.init_scope():
            self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w)
            self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w)
            self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w)
            self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w)
            self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w)
            self.bn0 = L.BatchNormalization(mid_ch)
            self.bn1 = L.BatchNormalization(mid_ch * 2)
            self.bn2 = L.BatchNormalization(mid_ch * 4)
            self.bn3 = L.BatchNormalization(mid_ch * 8) 
示例15
def __init__(self, in_channels, top_width, mid_ch, wscale=0.01):
        super(VideoDiscriminatorNoBetaInitUniform, self).__init__()
        w = chainer.initializers.Uniform(wscale)
        with self.init_scope():
            self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w)
            self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w)
            self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w)
            self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w)
            self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w)
            self.bn0 = L.BatchNormalization(mid_ch, use_beta=False)
            self.bn1 = L.BatchNormalization(mid_ch * 2, use_beta=False)
            self.bn2 = L.BatchNormalization(mid_ch * 4, use_beta=False)
            self.bn3 = L.BatchNormalization(mid_ch * 8, use_beta=False) 
示例16
def __init__(self, in_channels, top_width, mid_ch):
        super(VideoDiscriminatorNoBetaInitDefault, self).__init__()
        w = None
        with self.init_scope():
            self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w)
            self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w)
            self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w)
            self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w)
            self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w)
            self.bn0 = L.BatchNormalization(mid_ch, use_beta=False)
            self.bn1 = L.BatchNormalization(mid_ch * 2, use_beta=False)
            self.bn2 = L.BatchNormalization(mid_ch * 4, use_beta=False)
            self.bn3 = L.BatchNormalization(mid_ch * 8, use_beta=False) 
示例17
def __init__(self, in_channels, top_width, mid_ch, sigma):
        super(VideoDiscriminatorNoBetaInitDefaultWithNoise, self).__init__()
        w = None
        with self.init_scope():
            self.c0 = L.ConvolutionND(3, in_channels, mid_ch, 4, 2, 1, initialW=w)
            self.c1 = L.ConvolutionND(3, mid_ch, mid_ch * 2, 4, 2, 1, initialW=w)
            self.c2 = L.ConvolutionND(3, mid_ch * 2, mid_ch * 4, 4, 2, 1, initialW=w)
            self.c3 = L.ConvolutionND(3, mid_ch * 4, mid_ch * 8, 4, 2, 1, initialW=w)
            self.c4 = L.Convolution2D(mid_ch * 8, 1, top_width, 1, 0, initialW=w)
            self.bn0 = L.BatchNormalization(mid_ch, use_beta=False)
            self.bn1 = L.BatchNormalization(mid_ch * 2, use_beta=False)
            self.bn2 = L.BatchNormalization(mid_ch * 4, use_beta=False)
            self.bn3 = L.BatchNormalization(mid_ch * 8, use_beta=False)
        self.sigma = sigma