Python源码示例:baselines.a2c.utils.fc()

示例1
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh):
    """
    Stack of fully-connected layers to be used in a policy / q-function approximator

    Parameters:
    ----------

    num_layers: int                 number of fully-connected layers (default: 2)
    
    num_hidden: int                 size of fully-connected layers (default: 64)
    
    activation:                     activation function (default: tf.tanh)
        
    Returns:
    -------

    function that builds fully connected network with a given input tensor / placeholder
    """        
    def network_fn(X):
        h = tf.layers.flatten(X)
        for i in range(num_layers):
            h = activation(fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)))
        return h, None

    return network_fn 
示例2
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        self.pdtype = make_pdtype(ac_space)
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X, **conv_kwargs)
            vf = fc(h, 'v', 1)[:,0]
            self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X:ob})

        self.X = X
        self.vf = vf
        self.step = step
        self.value = value 
示例3
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        self.pdtype = make_pdtype(ac_space)
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X, **conv_kwargs)
            vf = fc(h, 'v', 1)[:,0]
            self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X:ob})

        self.X = X
        self.vf = vf
        self.step = step
        self.value = value 
示例4
def nature_cnn(unscaled_images):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2)))
    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2)))
    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2)))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) 
示例5
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
示例6
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps

        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
示例7
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            pi = fc(h, 'pi', nact, init_scale=0.01)
            vf = fc(h, 'v', 1)[:,0]

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X:ob})

        self.X = X
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
示例8
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
        ob_shape = (nbatch,) + ob_space.shape
        actdim = ac_space.shape[0]
        X = tf.placeholder(tf.float32, ob_shape, name='Ob') #obs
        with tf.variable_scope("model", reuse=reuse):
            activ = tf.tanh
            h1 = activ(fc(X, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
            h2 = activ(fc(h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
            pi = fc(h2, 'pi', actdim, init_scale=0.01)
            h1 = activ(fc(X, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
            h2 = activ(fc(h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
            vf = fc(h2, 'vf', 1)[:,0]
            logstd = tf.get_variable(name="logstd", shape=[1, actdim],
                initializer=tf.zeros_initializer())

        pdparam = tf.concat([pi, pi * 0.0 + logstd], axis=1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pdparam)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X:ob})

        self.X = X
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value


########################################################################################################################
# Intrinsic Reward Augmented Policies
######################################################################################################################## 
示例9
def nature_cnn(unscaled_images):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2)))
    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2)))
    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2)))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) 
示例10
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
示例11
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps

        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
示例12
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            pi = fc(h, 'pi', nact, init_scale=0.01)
            vf = fc(h, 'v', 1)[:,0]

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X:ob})

        self.X = X
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
示例13
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
        ob_shape = (nbatch,) + ob_space.shape
        actdim = ac_space.shape[0]
        X = tf.placeholder(tf.float32, ob_shape, name='Ob') #obs
        with tf.variable_scope("model", reuse=reuse):
            activ = tf.tanh
            h1 = activ(fc(X, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
            h2 = activ(fc(h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
            pi = fc(h2, 'pi', actdim, init_scale=0.01)
            h1 = activ(fc(X, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
            h2 = activ(fc(h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
            vf = fc(h2, 'vf', 1)[:,0]
            logstd = tf.get_variable(name="logstd", shape=[1, actdim],
                initializer=tf.zeros_initializer())

        pdparam = tf.concat([pi, pi * 0.0 + logstd], axis=1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pdparam)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X:ob})

        self.X = X
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value


########################################################################################################################
# Intrinsic Reward Augmented Policies
######################################################################################################################## 
示例14
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False):
        nbatch = nenv * nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc * nstack)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape)  # obs
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            pi_logits = fc(h, 'pi', nact, init_scale=0.01)
            pi = tf.nn.softmax(pi_logits)
            q = fc(h, 'q', nact)

        a = sample(pi_logits)  # could change this to use self.pi instead
        self.initial_state = []  # not stateful
        self.X = X
        self.pi = pi  # actual policy params now
        self.q = q

        def step(ob, *args, **kwargs):
            # returns actions, mus, states
            a0, pi0 = sess.run([a, pi], {X: ob})
            return a0, pi0, []  # dummy state

        def out(ob, *args, **kwargs):
            pi0, q0 = sess.run([pi, q], {X: ob})
            return pi0, q0

        def act(ob, *args, **kwargs):
            return sess.run(a, {X: ob})

        self.step = step
        self.out = out
        self.act = act 
示例15
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False, nlstm=256):
        nbatch = nenv * nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc * nstack)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape)  # obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)

            # lstm
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)

            pi_logits = fc(h5, 'pi', nact, init_scale=0.01)
            pi = tf.nn.softmax(pi_logits)
            q = fc(h5, 'q', nact)

        a = sample(pi_logits)  # could change this to use self.pi instead
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
        self.X = X
        self.M = M
        self.S = S
        self.pi = pi  # actual policy params now
        self.q = q

        def step(ob, state, mask, *args, **kwargs):
            # returns actions, mus, states
            a0, pi0, s = sess.run([a, pi, snew], {X: ob, S: state, M: mask})
            return a0, pi0, s

        self.step = step 
示例16
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False):
        nbatch = nenv * nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc * nstack)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape)  # obs
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            pi_logits = fc(h, 'pi', nact, init_scale=0.01)
            pi = tf.nn.softmax(pi_logits)
            q = fc(h, 'q', nact)

        a = sample(tf.nn.softmax(pi_logits))  # could change this to use self.pi instead
        self.initial_state = []  # not stateful
        self.X = X
        self.pi = pi  # actual policy params now
        self.pi_logits = pi_logits
        self.q = q
        self.vf = q

        def step(ob, *args, **kwargs):
            # returns actions, mus, states
            a0, pi0 = sess.run([a, pi], {X: ob})
            return a0, pi0, []  # dummy state

        def out(ob, *args, **kwargs):
            pi0, q0 = sess.run([pi, q], {X: ob})
            return pi0, q0

        def act(ob, *args, **kwargs):
            return sess.run(a, {X: ob})

        self.step = step
        self.out = out
        self.act = act 
示例17
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False, nlstm=256):
        nbatch = nenv * nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc * nstack)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape)  # obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)

            # lstm
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)

            pi_logits = fc(h5, 'pi', nact, init_scale=0.01)
            pi = tf.nn.softmax(pi_logits)
            q = fc(h5, 'q', nact)

        a = sample(pi_logits)  # could change this to use self.pi instead
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
        self.X = X
        self.M = M
        self.S = S
        self.pi = pi  # actual policy params now
        self.q = q

        def step(ob, state, mask, *args, **kwargs):
            # returns actions, mus, states
            a0, pi0, s = sess.run([a, pi, snew], {X: ob, S: state, M: mask})
            return a0, pi0, s

        self.step = step 
示例18
def nature_cnn(unscaled_images, **conv_kwargs):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
                   **conv_kwargs))
    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) 
示例19
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
        return self.pdfromflat(pdparam), pdparam 
示例20
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
        pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        return self.pdfromflat(pdparam), mean 
示例21
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
        return self.pdfromflat(pdparam), pdparam 
示例22
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
        pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        return self.pdfromflat(pdparam), mean 
示例23
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        pdparam = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        return self.pdfromflat(pdparam), pdparam

# WRONG SECOND DERIVATIVES
# class CategoricalPd(Pd):
#     def __init__(self, logits):
#         self.logits = logits
#         self.ps = tf.nn.softmax(logits)
#     @classmethod
#     def fromflat(cls, flat):
#         return cls(flat)
#     def flatparam(self):
#         return self.logits
#     def mode(self):
#         return U.argmax(self.logits, axis=-1)
#     def logp(self, x):
#         return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
#     def kl(self, other):
#         return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
#                 - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def entropy(self):
#         return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def sample(self):
#         u = tf.random_uniform(tf.shape(self.logits))
#         return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
示例24
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
        pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        return self.pdfromflat(pdparam), mean 
示例25
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        pdparam = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        return self.pdfromflat(pdparam), pdparam

# WRONG SECOND DERIVATIVES
# class CategoricalPd(Pd):
#     def __init__(self, logits):
#         self.logits = logits
#         self.ps = tf.nn.softmax(logits)
#     @classmethod
#     def fromflat(cls, flat):
#         return cls(flat)
#     def flatparam(self):
#         return self.logits
#     def mode(self):
#         return U.argmax(self.logits, axis=-1)
#     def logp(self, x):
#         return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
#     def kl(self, other):
#         return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
#                 - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def entropy(self):
#         return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def sample(self):
#         u = tf.random_uniform(tf.shape(self.logits))
#         return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
示例26
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
        return self.pdfromflat(pdparam), pdparam 
示例27
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
        mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
        logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
        pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        return self.pdfromflat(pdparam), mean 
示例28
def nature_cnn(unscaled_images):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2)))
    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2)))
    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2)))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) 
示例29
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
示例30
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps

        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value