Python源码示例:baselines.a2c.utils.EpisodeStats()

示例1
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例2
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例3
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例4
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例5
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例6
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例7
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例8
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, sil_update=4, sil_beta=0.0):
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, sil_update=sil_update, sil_beta=sil_beta)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    episode_stats = EpisodeStats(nsteps, nenvs)
    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values, raw_rewards = runner.run()
        episode_stats.feed(raw_rewards, masks)
        policy_loss, value_loss, policy_entropy, v_avg = model.train(obs, states, rewards, masks, actions, values)
        sil_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train()
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("episode_reward", episode_stats.mean_reward())
            logger.record_tabular("best_episode_reward", float(model.sil.get_best_reward()))
            if sil_update > 0:
                logger.record_tabular("sil_num_episodes", float(model.sil.num_episodes()))
                logger.record_tabular("sil_valid_samples", float(sil_samples))
                logger.record_tabular("sil_steps", float(model.sil.num_steps()))
            logger.dump_tabular()
    env.close()
    return model 
示例9
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例10
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None 
示例11
def __init__(self, runner, model, buffer, log_interval):
        self.runner = runner
        self.model = model
        self.buffer = buffer
        self.log_interval = log_interval
        self.tstart = None
        self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
        self.steps = None