假设数据集中有一列名为GROUP:
summ <- function(dataset, FUN = mean, …) {
dataset <- dataset %>% group_by(GROUP) %>% summarise_each(funs(FUN)) %>% arrange(GROUP)
data.frame(dataset)
}
dataset<- data.frame(a = c(1, 2, 3, NA), GROUP = c(1, 2, 2, 1)
summ(dataset, na.rm = TRUE)
GROUP a
1 1 NA
2 2 2.5
所需的行为是将na. rm=TRUE参数传递给均值函数以在计算结果之前删除NA。预期输出是:
GROUP a
1 1 1
2 2 2.5
如何将…参数传递给funs?我试过
summarise_each(funs(FUN(., …)))
和
FUN <- match.fun(FUN)
funs_(dots = substitute(FUN), args = list(...))
和
summarise_each(funs_(dots = FUN, args = list(…)))
最后一个示例引发错误'Error in UseMethod("as.lazy_dots")'
在您的函数中,创建一个新函数,它是包含点-点-点的FUN
函数:
summ <- function(dataset, FUN = mean, ...) {
FUN2 = function(x){FUN(x,...)}
dataset <- dataset %>% group_by(GROUP) %>% summarise_each(funs(FUN2)) %>% arrange(GROUP)
data.frame(dataset)
}
> summ(dataset,na.rm=TRUE)
GROUP a
1 1 1.0
2 2 2.5
> summ(dataset)
GROUP a
1 1 NA
2 2 2.5
>
将点捕获为列表,并使用替换
我们可以正确使用funs_
:
summ <- function(dataset, FUN = mean, ...) {
dots <- list(...)
FUN <- substitute(FUN)
dataset %>%
group_by(GROUP) %>%
summarise_each(funs_(FUN, args = dots)) %>%
arrange(GROUP)
}
summ(dataset, na.rm = TRUE)
# A tibble: 2 × 2
GROUP a
<dbl> <dbl>
1 1 1.0
2 2 2.5