提问者:小点点

使用带有Dataset类的TensorFlow提升到正方形


我想写一个神经网络,它在没有预定义模型的情况下寻找x^2分布。准确地说,它在[-1,1]中给定一些点,并用它们的平方进行训练,然后它必须重现和预测类似的数据,例如[-10,10]。我或多或少地做过——没有数据集。但后来我试图修改它,以便使用数据集并学习如何使用它。现在,我成功地使程序运行,但输出比以前更差,主要是它是常量0。

以前的版本就像[-1,1]中的x^2,线性延长,这更好…以前的输出,蓝线现在是平坦的。目标是与红色的一致…

这里,评论是波兰语,抱歉。

# square2.py - drugie podejscie do trenowania sieci za pomocą Tensorflow
# cel: nauczyć sieć rozpoznawać rozkład x**2
# analiza skryptu z:
# https://stackoverflow.com/questions/43140591/neural-network-to-predict-nth-square

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.python.framework.ops import reset_default_graph

# def. danych do trenowania sieci
# x_train = (np.random.rand(10**3)*4-2).reshape(-1,1)
# y_train = x_train**2
square2_dane = np.load("square2_dane.npz")
x_train = square2_dane['x_tren'].reshape(-1,1)
y_train = square2_dane['y_tren'].reshape(-1,1) 

# zoptymalizować dzielenie danych
# x_train = square2_dane['x_tren'].reshape(-1,1)
# ds_x = tf.data.Dataset.from_tensor_slices(x_train)
# batch_x = ds_x.batch(rozm_paczki)
# iterator = ds_x.make_one_shot_iterator()

# określenie parametrów sieci
wymiary = [50,50,50,1]
epoki = 500
rozm_paczki = 200

reset_default_graph()
X = tf.placeholder(tf.float32, shape=[None,1])
Y = tf.placeholder(tf.float32, shape=[None,1])

weights = []
biases = []
n_inputs = 1

# inicjalizacja zmiennych
for i,n_outputs in enumerate(wymiary):
    with tf.variable_scope("layer_{}".format(i)):
        w = tf.get_variable(name="W", shape=[n_inputs,n_outputs],initializer = tf.random_normal_initializer(mean=0.0,stddev=0.02,seed=42))
        b=tf.get_variable(name="b",shape=[n_outputs],initializer=tf.zeros_initializer)
        weights.append(w)
        biases.append(b)
        n_inputs=n_outputs

def forward_pass(X,weights,biases):
    h=X
    for i in range(len(weights)):
        h=tf.add(tf.matmul(h,weights[i]),biases[i])
        h=tf.nn.relu(h)
    return h    

output_layer = forward_pass(X,weights,biases)
f_strat = tf.reduce_mean(tf.squared_difference(output_layer,Y),1)
f_strat = tf.reduce_sum(f_strat)
# alternatywna funkcja straty
#f_strat2 = tf.reduce_sum(tf.abs(Y-y_train)/y_train)
optimizer = tf.train.AdamOptimizer(learning_rate=0.003).minimize(f_strat)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    # trenowanie
    dataset = tf.data.Dataset.from_tensor_slices((x_train,y_train))
    dataset = dataset.batch(rozm_paczki)
    dataset = dataset.repeat(epoki)
    iterator = dataset.make_one_shot_iterator()
    ds_x, ds_y = iterator.get_next()
    sess.run(optimizer, {X: sess.run(ds_x), Y: sess.run(ds_y)})
    saver = tf.train.Saver()
    save = saver.save(sess, "./model.ckpt")
    print("Model zapisano jako: %s" % save)

    # puszczenie sieci na danych
    x_test = np.linspace(-1,1,600)
    network_outputs = sess.run(output_layer,feed_dict = {X :x_test.reshape(-1,1)})

plt.plot(x_test,x_test**2,color='r',label='y=x^2')
plt.plot(x_test,network_outputs,color='b',label='sieć NN')
plt.legend(loc='right')
plt.show()

我认为问题在于训练数据的输入sess.run(优化器,{X:sess.run(ds_x),Y:sess.run(ds_y)})或ds_x的定义,ds_y。这是我的第一个这样的程序…所以这是行的输出(insead的“看到”块)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    # trenowanie
    for i in range(epoki):
        idx = np.arange(len(x_train))
        np.random.shuffle(idx)
        for j in range(len(x_train)//rozm_paczki):
            cur_idx = idx[rozm_paczki*j:(rozm_paczki+1)*j]
            sess.run(optimizer,feed_dict = {X:x_train[cur_idx],Y:y_train[cur_idx]})
    saver = tf.train.Saver()
    save = saver.save(sess, "./model.ckpt")
    print("Model zapisano jako: %s" % save)

谢谢!

附言:我受到神经网络的高度启发来预测n平方


共1个答案

匿名用户

有两个问题会让你的模型精度很差,都涉及这条线:

sess.run(optimizer, {X: sess.run(ds_x), Y: sess.run(ds_y)})

>

  • 只有一个训练步骤会执行,因为这段代码不在循环中。您的原始代码运行了len(x_train)//rozm_paczki步骤,这应该会取得更多进展。

    sess.run(ds_x)sess.run(ds_y)的两次调用在不同的步骤中运行,这意味着它们将包含来自不同批次的不相关的值。每次调用sess.run(ds_x)sess.run(ds_y)都会将迭代器移动到下一个批次,并丢弃您在sess.run()调用中没有明确请求的输入元素的任何部分。本质上,您将从批次i获得X,从批次i 1获得Y(反之亦然),并且模型将在无效数据上进行训练。如果要从同一个批处理中获取值,则需要在单个sess.run([ds_x,ds_y])调用中进行。

    还有两个问题可能会影响效率:

    数据集没有被打乱。您的原始代码在每个纪元开始时调用np.随机. shuffle()。您应该在dataset=dataset.shuffle(len(x_train))之前包含一个dataset=dataset.重复()

    迭代器中获取值返回到Python(例如,当您执行sess.run(ds_x)时)并将它们反馈到训练步骤中是低效的。将迭代器的输出作为输入直接传递到前馈步骤中会更有效。get_next()操作。

    综上所述,这是你的程序的重写版本,它解决了这四点,并获得了正确的结果。(不幸的是,我的波兰语不够好,无法保留注释,所以我已经翻译成英语。)

    import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    
    # Generate training data.
    x_train = np.random.rand(10**3, 1).astype(np.float32) * 4 - 2
    y_train = x_train ** 2
    
    # Define hyperparameters.
    DIMENSIONS = [50,50,50,1]
    NUM_EPOCHS = 500
    BATCH_SIZE = 200
    
    dataset = tf.data.Dataset.from_tensor_slices((x_train,y_train))
    dataset = dataset.shuffle(len(x_train))  # (Point 3.) Shuffle each epoch.
    dataset = dataset.repeat(NUM_EPOCHS)
    dataset = dataset.batch(BATCH_SIZE)
    iterator = dataset.make_one_shot_iterator()
    
    # (Point 2.) Ensure that `X` and `Y` correspond to the same batch of data.
    # (Point 4.) Pass the tensors returned from `iterator.get_next()`
    # directly as the input of the network.
    X, Y = iterator.get_next()
    
    # Initialize variables.
    weights = []
    biases = []
    n_inputs = 1
    for i, n_outputs in enumerate(DIMENSIONS):
      with tf.variable_scope("layer_{}".format(i)):
        w = tf.get_variable(name="W", shape=[n_inputs, n_outputs],
                            initializer=tf.random_normal_initializer(
                                mean=0.0, stddev=0.02, seed=42))
        b = tf.get_variable(name="b", shape=[n_outputs],
                            initializer=tf.zeros_initializer)
        weights.append(w)
        biases.append(b)
        n_inputs = n_outputs
    
    def forward_pass(X,weights,biases):
      h = X
      for i in range(len(weights)):
        h=tf.add(tf.matmul(h, weights[i]), biases[i])
        h=tf.nn.relu(h)
      return h
    
    output_layer = forward_pass(X, weights, biases)
    loss = tf.reduce_sum(tf.reduce_mean(
        tf.squared_difference(output_layer, Y), 1))
    optimizer = tf.train.AdamOptimizer(learning_rate=0.003).minimize(loss)
    saver = tf.train.Saver()
    
    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
    
      # (Point 1.) Run the `optimizer` in a loop. Use try-while-except to iterate
      # until all elements in `dataset` have been consumed.
      try:
        while True:
          sess.run(optimizer)
      except tf.errors.OutOfRangeError:
        pass
    
      save = saver.save(sess, "./model.ckpt")
      print("Model saved to path: %s" % save)
    
      # Evaluate network.
      x_test = np.linspace(-1, 1, 600)
      network_outputs = sess.run(output_layer, feed_dict={X: x_test.reshape(-1, 1)})
    
    plt.plot(x_test,x_test**2,color='r',label='y=x^2')
    plt.plot(x_test,network_outputs,color='b',label='NN prediction')
    plt.legend(loc='right')
    plt.show()